Semantic Query Answering in Digital Libraries

  • Ilianna Kollia
  • Kostas Rapantzikos
  • Giorgos Stamou
  • Andreas Stafylopatis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7297)

Abstract

A large activity for digitization, access and preservation of cultural heritage is taking place in Europe and the United States, which involves all types of cultural institutions, i.e., galleries, libraries, museums, archives and all types of cultural content. Semantic interoperability is a key issue in these developments. Content metadata constitute the main features of cultural items that are analysed and used to interpret users’ queries, so that the most appropriate content is presented to the users. This paper presents a new semantic search methodology, including a query answering mechanism which meets the semantics of users’ queries and enriches the answers by exploiting appropriate visual features, through an interweaved knowledge and machine learning based approach. An experimental study is presented, using content from the Europeana digital library, illustrating the improved performance of the proposed semantic search approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, Applications. Cambridge University Press (2007)Google Scholar
  2. 2.
    Kollia, I., Glimm, B., Horrocks, I.: SPARQL Query Answering over OWL Ontologies. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 382–396. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Shearer, R., Motik, B., Horrocks, I.: HermiT: A Highly-Efficient OWL Reasoner. In: Proc. of the 5th Int. Workshop on OWL: Experiences and Directions (2008)Google Scholar
  4. 4.
    Motik, B., Patel-Schneider, P., Parsia, B.: OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax. W3C Recommendation (2009)Google Scholar
  5. 5.
    Kollia, I., Simou, N., Stafylopatis, A., Kollias, S.: Semantic Image Analysis using a Symbolic Neural Architecture. Journal of Image Analysis and Stereology (2010)Google Scholar
  6. 6.
    Kollia, I., Tzouvaras, V., Drosopoulos, N., Stamou, G.: A Systemic Approach for Effective Semantic Access to Cultural Content. Semantic Web Journal (2012)Google Scholar
  7. 7.
    Fanizzi, N., d’Amato, C., Esposit, F.: Statistical Learning for Inductive Query Answering on OWL Ontologies. In: Intl. Semantic Web Conference, Karlsruhe, Germany (2008)Google Scholar
  8. 8.
    Kalomirakis, D.: Polydefkis: A Terminology Thesauri for Monuments. In: Tsipopoulou, M. (ed.) Proc. of Digital Heritage in the New Knowledge Environment, Athens (2008)Google Scholar
  9. 9.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Chang, S., Sikora, T., Puri, A.: Overview of the MPEG-7 Standard. IEEE Trans. on Circuits and Systems for Video Technology 11, 688–695 (2001)CrossRefGoogle Scholar
  11. 11.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: Intl. Conf. on Computer Vision Theory and Application, pp. 331–340. INSTICC Press (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ilianna Kollia
    • 1
  • Kostas Rapantzikos
    • 1
  • Giorgos Stamou
    • 1
  • Andreas Stafylopatis
    • 1
  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations