Signatures of Magnetic Reconnection in Solar Eruptive Flares: A Multi-wavelength Perspective

  • Bhuwan Joshi
  • Astrid Veronig
  • P. K. Manoharan
  • Boris V. Somov
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 33)


In this article, we review some key aspects of a multi-wavelength flare which have essentially contributed to form a standard flare model based on the magnetic reconnection. The emphasis is given on the recent observations taken by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on the X-ray emission originating from different regions of the coronal loops. We also briefly summarize those observations which do not seem to accommodate within the canonical flare picture and discuss the challenges for future investigations.


Solar Flare Magnetic Reconnection Coronal Loop Impulsive Phase Ramaty High Energy Solar Spectroscopic Imager 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This activity has been supported by the European Community Framework Programme 7, ‘High Energy Solar Physics Data in Europe (HESPE)’, grant agreement no.: 263086. We thank Dr. Brajesh Kumar and Dr. Anand Joshi for carefully going through the manuscript. Thanks are also due to an anonymous referee for helpful suggestions.


  1. 1.
    S. K. Antiochos and P. A. Sturrock. Evaporative cooling of flare plasma. Astrophys. J., 220:1137–1143, March 1978.Google Scholar
  2. 2.
    M. J. Aschwanden and D. Alexander. Flare Plasma Cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille Day Event (14 July 2000). Solar Phys., 204:91–120, December 2001.Google Scholar
  3. 3.
    M. Battaglia, L. Fletcher, and A. O. Benz. Observations of conduction driven evaporation in the early rise phase of solar flares. Astron. Astrophys., 498:891–900, May 2009.Google Scholar
  4. 4.
    A. O. Benz. Spectral features in solar hard X-ray and radio events and particle acceleration. Astrophys. J., 211:270–280, January 1977.Google Scholar
  5. 5.
    J. W. Brosius. Chromospheric Evaporation and Warm Rain during a Solar Flare Observed in High Time Resolution with the Coronal Diagnostic Spectrometer aboard the Solar and Heliospheric Observatory. Astrophys. J., 586:1417–1429, April 2003.Google Scholar
  6. 6.
    J. C. Brown. The Deduction of Energy Spectra of Non-Thermal Electrons in Flares from the Observed Dynamic Spectra of Hard X-Ray Bursts. Solar Phys., 18:489–502, July 1971.Google Scholar
  7. 7.
    R. C. Canfield, M. D. Kazachenko, L. W. Acton, D. H. Mackay, J. Son, and T. L. Freeman. Yohkoh SXT Full-Resolution Observations of Sigmoids: Structure, Formation, and Eruption. Astrophys. J. Lett., 671:L81–L84, December 2007.Google Scholar
  8. 8.
    H. Carmichael. A Process for Flares. NASA Special Publication, 50:451, 1964.Google Scholar
  9. 9.
    C. Chifor, D. Tripathi, H. E. Mason, and B. R. Dennis. X-ray precursors to flares and filament eruptions. Astron. Astrophys., 472:967–979, September 2007.Google Scholar
  10. 10.
    E. W. Cliver, B. R. Dennis, A. L. Kiplinger, S. R. Kane, D. F. Neidig, N. R. Sheeley, Jr., and M. J. Koomen. Solar gradual hard X-ray bursts and associated phenomena. Astrophys. J., 305:920–935, June 1986.Google Scholar
  11. 11.
    J. L. Culhane, J. F. Vesecky, and K. J. H. Phillips. The Cooling of Flare Produced Plasmas in the Solar Corona. Solar Phys., 15:394–413, December 1970.Google Scholar
  12. 12.
    F. Fárník, H. Hudson, and T. Watanabe. Spatial Relations between Preflares and Flares. Solar Phys., 165:169–179, April 1996.Google Scholar
  13. 13.
    F. Fárník and S. K. Savy. Soft X-Ray Pre-Flare Emission Studied in Yohkoh-SXT Images. Solar Phys., 183:339–357, December 1998.Google Scholar
  14. 14.
    T. G. Forbes and L. W. Acton. Reconnection and Field Line Shrinkage in Solar Flares. Astrophys. J., 459:330, March 1996.Google Scholar
  15. 15.
    A. Glover, N. D. R. Ranns, L. K. Harra, and J. L. Culhane. The Onset and Association of CMEs with Sigmoidal Active Regions. Geophys. Res. Lett., 27:2161, July 2000.Google Scholar
  16. 16.
    P. C. Grigis and A. O. Benz. The spectral evolution of impulsive solar X-ray flares. Astron. Astrophys., 426:1093–1101, November 2004.Google Scholar
  17. 17.
    M. J. Hagyard, D. Teuber, E. A. West, and J. B. Smith. A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring. Solar Phys., 91:115–126, March 1984.Google Scholar
  18. 18.
    T. Hirayama. Theoretical Model of Flares and Prominences. I: Evaporating Flare Model. Solar Phys., 34:323–338, February 1974.Google Scholar
  19. 19.
    H. S. Hudson, J. R. Lemen, O. C. St. Cyr, A. C. Sterling, and D. F. Webb. X-ray coronal changes during halo CMEs. Geophys. Res. Lett., 25:2481–2484, 1998.Google Scholar
  20. 20.
    S. Ishikawa, S. Krucker, T. Takahashi, and R. P. Lin. On the Relation of Above-the-loop and Footpoint Hard X-Ray Sources in Solar Flares. Astrophys. J., 737:48, August 2011.Google Scholar
  21. 21.
    H. Ji, G. Huang, and H. Wang. The Relaxation of Sheared Magnetic Fields: A Contracting Process. Astrophys. J., 660:893–900, May 2007.Google Scholar
  22. 22.
    H. Ji, G. Huang, H. Wang, T. Zhou, Y. Li, Y. Zhang, and M. Song. Converging Motion of Hα Conjugate Kernels: The Signature of Fast Relaxation of a Sheared Magnetic Field. Astrophys. J. Lett., 636:L173–L174, January 2006.Google Scholar
  23. 23.
    H. Ji, H. Wang, C. Liu, and B. R. Dennis. A Hard X-Ray Sigmoidal Structure during the Initial Phase of the 2003 October 29 X10 Flare. Astrophys. J., 680:734–739, June 2008.Google Scholar
  24. 24.
    B. Joshi, P. K. Manoharan, A. M. Veronig, P. Pant, and K. Pandey. Multi-Wavelength Signatures of Magnetic Reconnection of a Flare-Associated Coronal Mass Ejection. Solar Phys., 242:143–158, May 2007.Google Scholar
  25. 25.
    B. Joshi and P. Pant. Distribution of Hα flares during solar cycle 23. Astron. Astrophys., 431:359–363, February 2005.Google Scholar
  26. 26.
    B. Joshi, P. Pant, and P. K. Manoharan. North-South Distribution of Solar Flares during Cycle 23. Journal of Astrophysics and Astronomy, 27:151–157, September 2006.Google Scholar
  27. 27.
    B. Joshi, A. Veronig, K.-S. Cho, S.-C. Bong, B. V. Somov, Y.-J. Moon, J. Lee, P. K. Manoharan, and Y.-H. Kim. Magnetic Reconnection During the Two-phase Evolution of a Solar Eruptive Flare. Astrophys. J., 706:1438–1450, December 2009.Google Scholar
  28. 28.
    B. Joshi, A. M. Veronig, J. Lee, S.-C. Bong, S. K. Tiwari, and K.-S. Cho. Pre-flare Activity and Magnetic Reconnection during the Evolutionary Stages of Energy Release in a Solar Eruptive Flare. Astrophys. J., 743:195, December 2011.Google Scholar
  29. 29.
    S. Kim, Y.-J. Moon, Y.-H. Kim, Y.-D. Park, K.-S. Kim, G. S. Choe, and K.-H. Kim. Preflare Eruption Triggered by a Tether-cutting Process. Astrophys. J., 683:510–515, August 2008.Google Scholar
  30. 30.
    A. L. Kiplinger. Comparative Studies of Hard X-Ray Spectral Evolution in Solar Flares with High-Energy Proton Events Observed at Earth. Astrophys. J., 453:973, November 1995.Google Scholar
  31. 31.
    R. A. Kopp and G. W. Pneuman. Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys., 50:85–98, October 1976.Google Scholar
  32. 32.
    S. Krucker, M. Battaglia, P. J. Cargill, L. Fletcher, H. S. Hudson, A. L. MacKinnon, S. Masuda, L. Sui, M. Tomczak, A. L. Veronig, L. Vlahos, and S. M. White. Hard X-ray emission from the solar corona. A&A Rev., 16:155–208, October 2008.Google Scholar
  33. 33.
    S. Krucker, G. J. Hurford, A. L. MacKinnon, A. Y. Shih, and R. P. Lin. Coronal γ-Ray Bremsstrahlung from Solar Flare-accelerated Electrons. Astrophys. J. Lett., 678:L63–L66, May 2008.Google Scholar
  34. 34.
    S. Krucker and R. P. Lin. Hard X-Ray Emissions from Partially Occulted Solar Flares. Astrophys. J., 673:1181–1187, February 2008.Google Scholar
  35. 35.
    B. Kumar and B. Ravindra. Analysis of Enhanced Velocity Signals Observed during Solar Flares. Journal of Astrophysics and Astronomy, 27:425–438, December 2006.Google Scholar
  36. 36.
    Y. P. Li and W. Q. Gan. The Shrinkage of Flare Radio Loops. Astrophys. J. Lett., 629:L137–L139, August 2005.Google Scholar
  37. 37.
    Y. P. Li and W. Q. Gan. The Oscillatory Shrinkage in TRACE 195 Å Loops during a Flare Impulsive Phase. Astrophys. J. Lett., 644:L97–L100, June 2006.Google Scholar
  38. 38.
    R. P. Lin, B. R. Dennis, and G. J. Hurford et al. The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys., 210:3–32, November 2002.Google Scholar
  39. 39.
    R. P. Lin and H. S. Hudson. Non-thermal processes in large solar flares. Solar Phys., 50:153–178, October 1976.Google Scholar
  40. 40.
    R. P. Lin, S. Krucker, G. J. Hurford, D. M. Smith, H. S. Hudson, G. D. Holman, R. A. Schwartz, B. R. Dennis, G. H. Share, R. J. Murphy, A. G. Emslie, C. Johns-Krull, and N. Vilmer. RHESSI Observations of Particle Acceleration and Energy Release in an Intense Solar Gamma-Ray Line Flare. Astrophys. J. Lett., 595:L69–L76, October 2003.Google Scholar
  41. 41.
    C. Liu, J. Lee, V. Yurchyshyn, N. Deng, K.-S. Cho, M. Karlický, and H. Wang. The Eruption from a Sigmoidal Solar Active Region on 2005 May 13. Astrophys. J., 669:1372–1381, November 2007.Google Scholar
  42. 42.
    R. Liu, C. Liu, S. Wang, N. Deng, and H. Wang. Sigmoid-to-flux-rope Transition Leading to a Loop-like Coronal Mass Ejection. Astrophys. J. Lett., 725:L84–L90, December 2010.Google Scholar
  43. 43.
    R. Liu, H. Wang, and D. Alexander. Implosion in a Coronal Eruption. Astrophys. J., 696:121–135, May 2009.Google Scholar
  44. 44.
    W. Liu, V. Petrosian, B. R. Dennis, and Y. W. Jiang. Double Coronal Hard and Soft X-Ray Source Observed by RHESSI: Evidence for Magnetic Reconnection and Particle Acceleration in Solar Flares. Astrophys. J., 676:704–716, March 2008.Google Scholar
  45. 45.
    P. K. Manoharan, L. van Driel-Gesztelyi, M. Pick, and P. Demoulin. Evidence for Large-Scale Solar Magnetic Reconnection from Radio and X-Ray Measurements. Astrophys. J. Lett., 468:L73, September 1996.Google Scholar
  46. 46.
    S. Masuda, T. Kosugi, H. Hara, S. Tsuneta, and Y. Ogawara. A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature, 371:495–497, October 1994.Google Scholar
  47. 47.
    R. O. Milligan, P. T. Gallagher, M. Mathioudakis, D. S. Bloomfield, F. P. Keenan, and R. A. Schwartz. RHESSI and SOHO CDS Observations of Explosive Chromospheric Evaporation. Astrophys. J. Lett., 638:L117–L120, February 2006.Google Scholar
  48. 48.
    R. O. Milligan, P. T. Gallagher, M. Mathioudakis, and F. P. Keenan. Observational Evidence of Gentle Chromospheric Evaporation during the Impulsive Phase of a Solar Flare. Astrophys. J. Lett., 642:L169–L171, May 2006.Google Scholar
  49. 49.
    R. L. Moore and G. Roumeliotis. Triggering of Eruptive Flares - Destabilization of the Preflare Magnetic Field Configuration. In Z. Svestka, B. V. Jackson, & M. E. Machado, editor, IAU Colloq. 133: Eruptive Solar Flares, volume 399 of Lecture Notes in Physics, Berlin Springer Verlag, page 69, 1992.Google Scholar
  50. 50.
    R. L. Moore, A. C. Sterling, H. S. Hudson, and J. R. Lemen. Onset of the Magnetic Explosion in Solar Flares and Coronal Mass Ejections. Astrophys. J., 552:833–848, May 2001.Google Scholar
  51. 51.
    W. M. Neupert. Comparison of Solar X-Ray Line Emission with Microwave Emission during Flares. Astrophys. J. Lett., 153:L59, July 1968.Google Scholar
  52. 52.
    S. Nitta, S. Imada, and T. T. Yamamoto. Clear Detection of Chromospheric Evaporation Upflows with High Spatial/Temporal Resolution by Hinode XRT. Solar Phys., page 398, November 2011.Google Scholar
  53. 53.
    R. Pallavicini, S. Serio, and G. S. Vaiana. A survey of soft X-ray limb flare images - The relation between their structure in the corona and other physical parameters. Astrophys. J., 216:108–122, August 1977.Google Scholar
  54. 54.
    R. Pallavicini, G. Tagliaferri, and L. Stella. X-ray emission from solar neighbourhood flare stars - A comprehensive survey of EXOSAT results. Astron. Astrophys., 228:403–425, February 1990.Google Scholar
  55. 55.
    J. C. Pandey and K. P. Singh. A study of X-ray flares - II. RS CVn-type binaries. Mon. Not. R. Astron. Soc., 419:1219–1237, January 2012.Google Scholar
  56. 56.
    E. R. Priest and T. G. Forbes. The magnetic nature of solar flares. A&A Rev., 10:313–377, 2002.Google Scholar
  57. 57.
    V. E. Reznikova, V. F. Melnikov, H. Ji, and K. Shibasaki. Dynamics of the Flaring Loop System of 2005 August 22 Observed in Microwaves and Hard X-rays. Astrophys. J., 724:171–181, November 2010.Google Scholar
  58. 58.
    D. M. Rust and A. Kumar. Evidence for Helically Kinked Magnetic Flux Ropes in Solar Eruptions. Astrophys. J. Lett., 464:L199, June 1996.Google Scholar
  59. 59.
    R. Saldanha, S. Krucker, and R. P. Lin. Hard X-ray Spectral Evolution and Production of Solar Energetic Particle Events during the January 2005 X-Class Flares. Astrophys. J., 673:1169–1173, February 2008.Google Scholar
  60. 60.
    B. Schmieder, P. Heinzel, J. E. Wiik, J. Lemen, B. Anwar, P. Kotrc, and E. Hiei. Relation between cool and hot post-flare loops of 26 June 1992 derived from optical and X-ray (SXT-Yohkoh) observations. Solar Phys., 156:337–361, February 1995.Google Scholar
  61. 61.
    A. V. R. Silva, H. Wang, and D. E. Gary. Correlation of Microwave and Hard X-Ray Spectral Parameters. Astrophys. J., 545:1116–1123, December 2000.Google Scholar
  62. 62.
    B. V. Somov. Non-neutral current sheets and solar flare energetics. Astron. Astrophys., 163:210–218, July 1986.Google Scholar
  63. 63.
    B. V. Somov. Interpretation of the observed motions of hard X-ray sources in solar flares. Astronomy Letters, 36:514–519, July 2010.Google Scholar
  64. 64.
    A. C. Sterling, H. S. Hudson, B. J. Thompson, and D. M. Zarro. Yohkoh SXT and SOHO EIT Observations of Sigmoid-to-Arcade Evolution of Structures Associated with Halo Coronal Mass Ejections. Astrophys. J., 532:628–647, March 2000.Google Scholar
  65. 65.
    P. A. Sturrock. Model of the High-Energy Phase of Solar Flares. Nature, 211:695–697, August 1966.Google Scholar
  66. 66.
    L. Sui and G. D. Holman. Evidence for the Formation of a Large-Scale Current Sheet in a Solar Flare. Astrophys. J. Lett., 596:L251–L254, October 2003.Google Scholar
  67. 67.
    L. Sui, G. D. Holman, and B. R. Dennis. Evidence for Magnetic Reconnection in Three Homologous Solar Flares Observed by RHESSI. Astrophys. J., 612:546–556, September 2004.Google Scholar
  68. 68.
    L. Sui, G. D. Holman, S. M. White, and J. Zhang. Multiwavelength Analysis of a Solar Flare on 2002 April 15. Astrophys. J., 633:1175–1186, November 2005.Google Scholar
  69. 69.
    S. I. Syrovatskii and O. P. Shmeleva. Heating of Plasma by High-Energy Electrons, and Nonthermal X-Ray Emission in Solar Flares. Soviet Astron., 16:273–282, September 1972.Google Scholar
  70. 70.
    S. J. Tappin. Do all solar flares have X-ray precursors? A&AS, 87:277–302, February 1991.Google Scholar
  71. 71.
    S. Tsuneta. Structure and Dynamics of Magnetic Reconnection in a Solar Flare. Astrophys. J., 456:840, January 1996.Google Scholar
  72. 72.
    S. Tsuneta, H. Hara, T. Shimizu, L. W. Acton, K. T. Strong, H. S. Hudson, and Y. Ogawara. Observation of a solar flare at the limb with the YOHKOH Soft X-ray Telescope. PASJ, 44:L63–L69, October 1992.Google Scholar
  73. 73.
    W. Uddin, B. Joshi, R. Chandra, and A. Joshi. Dynamics of Limb Flare and Associated Primary and Secondary Post Flare Loops. Bulletin of the Astronomical Society of India, 31:303–308, March 2003.Google Scholar
  74. 74.
    P. Venkatakrishnan, B. Kumar, and W. Uddin. Co-spatial evolution of photospheric Doppler enhancements and Hα flare ribbons observed during the solar flare of 2003 October 28. Mon. Not. R. Astron. Soc., 387:L69–L73, June 2008.Google Scholar
  75. 75.
    A. M. Veronig and J. C. Brown. A Coronal Thick-Target Interpretation of Two Hard X-Ray Loop Events. Astrophys. J. Lett., 603:L117–L120, March 2004.Google Scholar
  76. 76.
    A. M. Veronig, J. C. Brown, and L. Bone. Evidence for a solar coronal thick-target hard X-ray source observed by RHESSI. Advances in Space Research, 35:1683–1689, 2005.Google Scholar
  77. 77.
    A. M. Veronig, M. Karlický, B. Vršnak, M. Temmer, J. Magdalenić, B. R. Dennis, W. Otruba, and W. Pötzi. X-ray sources and magnetic reconnection in the X3.9 flare of 2003 November 3. Astron. Astrophys., 446:675–690, February 2006.Google Scholar
  78. 78.
    A. M. Veronig, J. Rybák, P. Gömöry, S. Berkebile-Stoiser, M. Temmer, W. Otruba, B. Vršnak, W. Pötzi, and D. Baumgartner. Multiwavelength Imaging and Spectroscopy of Chromospheric Evaporation in an M-class Solar Flare. Astrophys. J., 719:655–670, August 2010.Google Scholar
  79. 79.
    B. Vršnak, M. Temmer, A. Veronig, M. Karlický, and J. Lin. Shrinking and Cooling of Flare Loops in a Two-Ribbon Flare. Solar Phys., 234:273–299, April 2006.Google Scholar
  80. 80.
    H. P. Warren and A. D. Warshall. Ultraviolet Flare Ribbon Brightenings and the Onset of Hard X-Ray Emission. Astrophys. J. Lett., 560:L87–L90, October 2001.Google Scholar
  81. 81.
    D. M. Zarro and J. R. Lemen. Conduction-driven chromospheric evaporation in a solar flare. Astrophys. J., 329:456–463, June 1988.Google Scholar
  82. 82.
    J. Zhang, K. P. Dere, R. A. Howard, M. R. Kundu, and S. M. White. On the Temporal Relationship between Coronal Mass Ejections and Flares. Astrophys. J., 559:452–462, September 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bhuwan Joshi
    • 1
  • Astrid Veronig
    • 2
  • P. K. Manoharan
    • 3
  • Boris V. Somov
    • 4
  1. 1.Physical Research LaboratoryUdaipur Solar ObservatoryUdaipurIndia
  2. 2.IGAM/Institute of PhysicsUniversity of GrazGrazAustria
  3. 3.Radio Astronomy Centre, Tata Institute of Fundamental ResearchUdhagamandalam (Ooty)India
  4. 4.Astronomical InstituteMoscow State UniversityMoscowRussia

Personalised recommendations