Privacy-Preserving Television Audience Measurement Using Smart TVs

  • George Drosatos
  • Aimilia Tasidou
  • Pavlos S. Efraimidis
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 376)


Internet-enabled television systems, often referred to as Smart TVs, are a new development in television and home entertainment technologies. In this work, we propose a new, privacy-preserving, approach for Television Audience Measurement (TAM), utilizing the capabilities of the Smart TV technologies. We propose a novel application to calculate aggregate audience measurements using Smart TV computation capabilities and permanent Internet access. Cryptographic techniques, including homomorphic encryption and zero-knowledge proofs, are used to ensure both that the privacy of the participating individuals is preserved and that the computed results are valid. Additionally, participants can be compensated for sharing their information. Preliminary experimental results on an Android-based Smart TV platform show the viability of the approach.


Privacy Television Audience Measurement (TAM) Smart TV Privacy-preserving Data Aggregation Economics of Privacy 


  1. 1.
    Acquisti, A.: Privacy and security of personal information: Technological solutions and economic incentives. In: Camp, J., Lewis, R. (eds.) The Economics of Information Security, pp. 165–178. Kluwer (2004)Google Scholar
  2. 2.
    Acquisti, A., Gritzalis, S., Lambrinoudakis, C., De Capitani di Vimercati, S.: Digital privacy. Auerbach Publications. Taylor & Francis Group (2008)Google Scholar
  3. 3.
    Adar, E., Huberman, B.: A market for secrets. First Monday 6(8) (2001)Google Scholar
  4. 4.
    Baudron, O., Fouque, P.A., Pointcheval, D., Stern, J., Poupard, G.: Practical multi-candidate election system. In: PODC 2001, pp. 274–283. ACM, New York (2001)CrossRefGoogle Scholar
  5. 5.
    Ciriani, V., Capitani di Vimercati, S., Foresti, S., Samarati, P.: κ-anonymity. In: Secure Data Management in Decentralized Systems. Advances in Information Security, vol. 33, pp. 323–353. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Eastlake, D.: Publicly Verifiable Nominations Committee (NomCom) Random Selection. RFC 3797 (Informational) (June 2004)Google Scholar
  8. 8.
    Goldreich, O.: The Foundations of Cryptography, vol. 2. Cambridge University Press (2004)Google Scholar
  9. 9.
    Karlof, C., Sastry, N., Wagner, D.: Cryptographic voting protocols: a systems perspective. In: 14th USENIX Security Symposium, pp. 33–50 (2005)Google Scholar
  10. 10.
    Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Kleinberg, J., Papadimitriou, C.H., Raghavan, P.: On the value of private information. In: TARK 2001, pp. 249–257. Morgan Kaufmann Publishers Inc. (2001)Google Scholar
  12. 12.
    Kremer, S., Ryan, M., Smyth, B.: Election Verifiability in Electronic Voting Protocols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 389–404. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Nishide, T., Sakurai, K.: Distributed Paillier Cryptosystem without Trusted Dealer. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 44–60. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamentals of computer security. Monographs in theoretical computer science, ch. 15. Springer (2003)Google Scholar
  16. 16.
    Rivest, R.L., Shamir, A.: PayWord and MicroMint: two simple micropayment schemes. In: CryptoBytes, vol. 2, pp. 69–87 (1996)Google Scholar
  17. 17.
    Shi, J., Zhang, R., Liu, Y., Zhang, Y.: PriSense: Privacy-preserving data aggregation in people-centric urban sensing systems. In: IEEE INFOCOM 2010, pp. 1–9. IEEE (March 2010)Google Scholar
  18. 18.
    Tasidou, A., Efraimidis, P.S., Katos, V.: Economics of personal data management: Fair personal information trades. In: Next Generation Society. Technological and Legal Issues. LNICST, vol. 26, pp. 151–160. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    US Government: The cable tv privacy act of 1984. In: 47 USC, Chapter 5, Subchapter V-A, Part IV, Sec. 551. U.S. Gov. Printing Office, Washington, DC (1984)Google Scholar
  20. 20.
    US Government: Video privacy protection act. In: 18 USC, Part I, Chapter 121, Sec. 2710, Pub.L. 100-618. U.S. Gov. Printing Office, Washington, DC (1988)Google Scholar
  21. 21.
    UTD Data Security and Privacy Lab: Paillier threshold encryption toolbox (November 2011),
  22. 22.
    Varian, H.: Economic aspects of personal privacy. In: Privacy and Self-regulation in the Information Age. NTIA, Washington, DC (1997)Google Scholar
  23. 23.
    Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS 1982, pp. 160–164. IEEE, Los Alamitos (1982)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • George Drosatos
    • 1
  • Aimilia Tasidou
    • 1
  • Pavlos S. Efraimidis
    • 1
  1. 1.Dept. of Electrical and Computer EngineeringDemocritus University, of ThraceXanthiGreece

Personalised recommendations