Advertisement

Hybrid Demand Oblivious Routing: Hyper-cubic Partitions and Theoretical Upper Bounds

  • Gábor Németh
  • Gábor Rétvári
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 66)

Summary

Traditionally, network routing was optimized with respect to an expected traffic matrix, which left the network in a suboptimal state if user traffic did not match expectations. A demand-oblivious routing is, contrarily, optimized with respect to all possible traffic matrices, obviating the need for traffic matrix estimation. Oblivious routing is a fundamentally distributed scheme, so it can be implemented easily. Unfortunately, in certain cases it may cause unwanted link over-utilization. Recently, we have introduced a hybrid centralized-distributed method to mitigate this shortcoming. However, our scheme did not provide a theoretical upper bound for the link over-utilization. In this paper, we tackle the problem again from a different perspective. Based on a novel hyper-cubic partition of the demand space, we construct a new algorithm that readily delivers the theoretical bounds. Simulation results show the theoretical and practical significance of our algorithm.

Keywords

oblivious ratio demand-oblivious routing hyper-cubic region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., Xiao, X.: Overview and principles of Internet traffic engineering. RFC 3272 (May 2002)Google Scholar
  2. 2.
    Cantor, D.G., Gerla, M.: Optimal routing in a packet-switched computer network. IEEE Transactions on Computer 23(10), 1062–1069 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fortz, B., Rexford, J., Thorup, M.: Traffic engineering with traditional IP routing protocols. IEEE Communications Magazine 40(10), 118–124 (2002)CrossRefGoogle Scholar
  4. 4.
    Roughan, M., Thorup, M., Zhang, Y.: Traffic engineering with estimated traffic matrices. In: IMC 2003: Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement, pp. 248–258 (2003)Google Scholar
  5. 5.
    Zhang, C., Liu, Y., Gong, W., Moll, J., Towsley, R.D.: On optimal routing with multiple traffic matrices. In: INFOCOM 2005, vol. 1, pp. 607–618 (2005)Google Scholar
  6. 6.
    Medhi, D.: Multi-hour, multi-traffic class network design for virtual path-based dynamically reconfigurable wide-area ATM networks. IEEE/ACM Transactions on Networking 3(6), 809–818 (1995)CrossRefGoogle Scholar
  7. 7.
    Wang, H., Xie, H., Qiu, L., Yang, Y.R., Zhang, Y., Greenberg, A.: COPE: traffic engineering in dynamic networks. SIGCOMM Comput. Commun. Rev. 36(4), 99–110 (2006)CrossRefGoogle Scholar
  8. 8.
    Bertsekas, D.P.: Dynamic behavior of shortest path routing algorithms for communication networks. IEEE Trans. on Automatic Control 27, 60–74 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chiang, M., Low, S.H., Calderbank, A.R., Doyle, J.C.: Layering as optimization decomposition: A mathematical theory of network architectures. Proceedings of the IEEE 95(1), 255–312 (2007)CrossRefGoogle Scholar
  10. 10.
    He, J., Bresler, M., Chiang, M., Rexford, J.: Towards robust multi-layer traffic engineering: Optimization of congestion control and routing. IEEE Journal on Selected Areas in Communications 25(5), 868–880 (2007)CrossRefGoogle Scholar
  11. 11.
    Lagoa, C.M., Che, H., Movsichoff, B.A.: Adaptive control algorithms for decentralized optimal traffic engineering in the internet. IEEE/ACM Trans. Netw. 12(3), 415–428 (2004)CrossRefGoogle Scholar
  12. 12.
    Kandula, S., Katabi, D., Davie, B., Charny, A.: Walking the Tightrope: Responsive Yet Stable Traffic Engineering. In: ACM SIGCOMM 2005 (August 2005)Google Scholar
  13. 13.
    Fischer, S., Kammenhuber, N., Feldmann, A.: REPLEX: dynamic traffic engineering based on wardrop routing policies. In: Proceedings of CoNEXT 2006, pp. 1–12 (2006)Google Scholar
  14. 14.
    Applegate, D., Cohen, E.: Making intra-domain routing robust to changing and uncertain traffic demands: understanding fundamental tradeoffs. In: Proceedings of SIGCOMM 2003, pp. 313–324 (2003)Google Scholar
  15. 15.
    Räcke, H.: Minimizing congestion in general networks. In: FOCS 2002, pp. 43–52 (2002)Google Scholar
  16. 16.
    Azar, Y., Cohen, E., Fiat, A., Kaplan, H., Räcke, H.: Optimal oblivious routing in polynomial time. J. Comput. Syst. Sci. 69(3), 383–394 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wellons, J., Xue, Y.: Oblivious routing for wireless mesh networks. In: ICC 2008, pp. 2969–2973 (May 2008)Google Scholar
  18. 18.
    Li, Y., Bai, B., Harms, J.J., Holte, R.C.: Stable and Robust Multipath Oblivious Routing for Traffic Engineering. In: Mason, L.G., Drwiega, T., Yan, J. (eds.) ITC 2007. LNCS, vol. 4516, pp. 129–140. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Applegate, D., Breslau, L., Cohen, E.: Coping with network failures: routing strategies for optimal demand oblivious restoration. SIGMETRICS Perform. Eval. Rev. 32(1), 270–281 (2004)CrossRefGoogle Scholar
  20. 20.
    Hajiaghayi, M., Kim, J., Leighton, T., Räcke, H.: Oblivious routing in directed graphs with random demands. In: STOC 2005, pp. 193–201 (2005)Google Scholar
  21. 21.
    Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Online oblivious routing. In: SPAA 2003, pp. 44–49 (2003)Google Scholar
  22. 22.
    Towles, B., Dally, W.: Worst-case traffic for oblivious routing functions. In: SPAA 2002, pp. 1–8 (2002)Google Scholar
  23. 23.
    Rétvári, G., Németh, G.: Demand-oblivious routing: distributed vs. centralized approaches. In: INFOCOM 2010 (March 2010)Google Scholar
  24. 24.
    Rétvári, G., Bíró, J.J., Cinkler, T.: Fairness in capacitated networks: A polyhedral approach. In: INFOCOM 2007, vol. 1, pp. 1604–1612 (May 2007)Google Scholar
  25. 25.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  26. 26.
    Grünbaum, B.: Convex Polytopes. John Wiley & Sons (1967)Google Scholar
  27. 27.
    Mahajan, R., Spring, N., Wetherall, D., Anderson, T.: Inferring link weights using end-to-end measurements. In: IMW 2002: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment, pp. 231–236 (2002)Google Scholar
  28. 28.
    Rétvári, G., Németh, G.: On optimal rate-adaptive routing. In: ISCC 2010, pp. 605–610 (2010)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Gábor Németh
    • 1
  • Gábor Rétvári
    • 1
  1. 1.Dept. of Telecommunications and Media InformaticsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations