Advertisement

Technology Choices and Pricing Policies in Wireless Networks

  • Yuanzhang Xiao
  • William R. Zame
  • Mihaela van der Schaar
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 75)

Abstract

This paper studies the provision of a wireless network by a monopolistic provider who may be either benevolent (seeking to maximize social welfare) or selfish (seeking to maximize provider profit). The paper addresses the following questions: Under what circumstances is it feasible for a provider, either benevolent or selfish, to operate a network in such a way as to cover costs? How is the optimal behavior of a benevolent provider different from the optimal behavior of a selfish provider, and how does this difference affect social welfare? And, most importantly, how does the medium access control (MAC) technology influence the answers to these questions? To address these questions, we build a general model, and provide analysis and simulations for simplified but typical scenarios; the focus in these scenarios is on the contrast between the outcomes obtained under carrier-sensing multiple access (CSMA) and outcomes obtained under time-division multiple access (TDMA). Simulation results demonstrate that differences in MAC technology can have a significant effect on social welfare, on provider profit, and even on the (financial) feasibility of a wireless network.

Keywords

network economics pricing wireless networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Palomar, D.P., Chiang, M.: A tutorial on decomposition methods for network utility maximization. IEEE J. Sel. Areas Commun. 24(8), 1439–1451 (2006)CrossRefGoogle Scholar
  2. 2.
    Kelly, F.P.: Charging and rate control for elastic traffic. Eur. Trans. TeleCommn. 8, 33–37 (1997)CrossRefGoogle Scholar
  3. 3.
    Kelly, F.P., Maulloo, A.K., Tan, D.K.H.: Rate control for communication networks: Shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49, 237–252 (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gibbens, R.J., Kelly, F.P.: Resource pricing and the evolution of congestion control. Automatica 35(12), 1969–1985 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Johari, R., Tsitsiklis, J.N.: Efficiency loss in a network resource allocation game. Math. Operations Research 29(3), 407–435 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Johari, R., Tsitsiklis, J.N.: Efficiency of scalar-parameterized mechanisms. Operations Research 57(4), 823–839 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Basar, T., Srikant, R.: Revenue-maximizing pricing and capacity expansion in a many-users regime. In: Proceedings IEEE INFOCOM 2002, pp. 1556–1563 (2002)Google Scholar
  8. 8.
    Shen, H., Basar, T.: Differentiated Internet pricing using a hierarchical network game model. In: Proc. 2004 American Control Conference, pp. 2322–2327 (2004)Google Scholar
  9. 9.
    Shen, H., Basar, T.: Optimal nonlinear pricing for a monopolistic network service provider with complete and incomplete information. IEEE J. Select. Areas Commun. 25, 1216–1223 (2007)CrossRefGoogle Scholar
  10. 10.
    Saraydar, C.U., Mandayam, N.B., Goodman, D.J.: Efficient power control via pricing in wireless data networks. IEEE Trans. on Communications 50, 291–303 (2002)CrossRefGoogle Scholar
  11. 11.
    Alpcan, T., Basar, T.: A hybrid noncooperative game model for wireless communications. In: Advances in Dynamic Games: Applications to Economics, Finance, Optimization, and Stochastic Control. Annals of Dynamic Games, vol. 9. Birkhauser (2006)Google Scholar
  12. 12.
    Paschalidis, I.C., Tsitsiklis, J.N.: Congestion-dependent pricing of network services. IEEE/ACM Trans. Networking 8(2), 171–184 (2000)CrossRefGoogle Scholar
  13. 13.
    Friedman, E., Parkes, D.: Pricing WiFi at Starbucks - Issues in online mechanism design. Working Paper (2002), http://www.eecs.harvard.edu/~parkes/pubs/online.pdf
  14. 14.
    Musacchio, J., Walrand, J.: WiFi access point pricing as a dyanmic game. IEEE/ACM Trans. Networking 14(2), 289–301 (2006)CrossRefGoogle Scholar
  15. 15.
    Ren, S., Park, J., van der Schaar, M.: User subscription dynamics and revenue maximization in communication markets. To appear in Infocom 2011 (2011)Google Scholar
  16. 16.
    Kasbekar, G., Sarkar, S.: Spectrum pricing games with bandwidth uncertainty and spatial reuse in cognitive radio networks. In: Proceedings of ACM MOBIHOC 2010, September 20-24 (2010)Google Scholar
  17. 17.
    Sirbua, M., Lehr, W., Gillett, S.: Evolving wireless access technologies for municipal broadband. Government Information Quarterly 23, 480–502 (2006)CrossRefGoogle Scholar
  18. 18.
    IEEE 802.11b: Wireless LAN Medium Access Control (MAC) and Physical layer (PHY) Specifications, IEEE Standard (1999)Google Scholar
  19. 19.
    Draft Supplement to Part 11: WIreless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Enhancements for Quality of Service (QoS), IEEE 802.11e/D10.0 (November 2004)Google Scholar
  20. 20.
    Tembine, H., Altman, E., El-Azouzi, R., Hayel, Y.: Evolutionary games in wireless networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 40(3), 634–646 (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    Ross, K.W., Tsang, D.: The stochastic knapsack problem. IEEE Trans. on Commun. 37(7), 740–747 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mas-Colell, A., Whinston, M., Green, J.: Microeconomic Theory. Oxford Univ. Press, Oxford (1995)zbMATHGoogle Scholar
  23. 23.
    Xiao, Y., Zame, W.R., van der Schaar, M.: Technology choices and pricing policies in public and private wireless networks, http://arxiv.org/abs/1011.3580
  24. 24.
    Nash, J.F.: Non-cooperative games. The Annals of Mathematics 54(2), 286–295 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    van der Schaar, M., Andreopoulos, Y., Hu, Z.: Optimized scalable video streaming over IEEE 802.11 a/e HCCA wireless networks under delay constraints. IEEE Trans. Mobile Comput. 5(6), 755–768 (2006)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Yuanzhang Xiao
    • 1
  • William R. Zame
    • 2
  • Mihaela van der Schaar
    • 1
  1. 1.Department of Electrical EngineeringUCLALos AngelesUSA
  2. 2.Department of EconomicsUCLALos AngelesUSA

Personalised recommendations