Adaptive Finite Element Methods for Parameter Identification Problems

Chapter
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 4)

Abstract

This chapter provides an overview on the use of adaptive finite element methods for parameter identification problems governed by partial differential equations. We discuss a posteriori error estimates for the finite element discretization error with respect to a given quantity of interest for both stationary (elliptic) and nonstationary (parabolic) problems. These error estimates guide adaptive algorithms for mesh refinement, which are tailored to the parameter identification problem. The capability of the presented methods is demonstrated on two model examples of (stationary and nonstationary) combustion problems. Moreover we present a recently developed technique for efficient computation of the Tikhonov regularization parameter in the context of distributed parameter estimation using adaptive finite element methods.

Keywords

Optimal Control Problem Error Estimator Posteriori Error Discretization Error Posteriori Error Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Becker, R., Braack, M., Vexler, B.: Numerical parameter estimation in multidimensional reactive flows. Combustion Theory and Modelling 8(4), 661 – 682 (2004)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Becker, R., Braack, M., Vexler, B.: Parameter identification for chemical models in combustion problems. Applied Numerical Mathematics 54(3–4), 519–536 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: Basic concepts. SIAM J. Control Optim. 39(1), 113–132 (2000)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Becker, R., Meidner, D., Vexler, B.: Efficient numerical solution of parabolic optimization problems by finite element methods. Optim. Methods Softw. 22(5), 813–833 (2007)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Becker, R., Rannacher, R.: An optimal control approach to a-posteriori error estimation. In: A. Iserles (ed.) Acta Numerica 2001, pp. 1–102. Cambridge University Press (2001)Google Scholar
  6. 6.
    Becker, R., Vexler, B.: A posteriori error estimation for finite element discretizations of parameter identification problems. Numer. Math. 96(3), 435–459 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Becker, R., Vexler, B.: Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations. J. Comp. Physics 206(1), 95–110 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Becker, R., Vexler, B.: Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer. Math. 106(3), 349–367 (2007)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Benedix, O., Vexler, B.: A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optim. Appl. 44(1), 3–25 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Braess, D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  11. 11.
    Brenner, S., Scott, R.: The mathematical theory of finite element methods. Springer Verlag, Berlin Heidelberg New York (2002)MATHCrossRefGoogle Scholar
  12. 12.
    Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)MATHCrossRefGoogle Scholar
  13. 13.
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. In: A. Iserles (ed.) Acta Numerica 1995, pp. 105–158. Cambridge University Press (1995)Google Scholar
  14. 14.
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational differential equations. Cambridge University Press, Cambridge (1996)MATHGoogle Scholar
  15. 15.
    Fursikov, A.V.: Optimal Control of Distributed Systems: Theory and Applications, Transl. Math. Monogr., vol. 187. AMS, Providence (1999)Google Scholar
  16. 16.
    Griesbaum, A., Kaltenbacher, B., Vexler, B.: Efficient computation of the Tikhonov regularization parameter by goal oriented adaptive discretization. Inverse Problems 24(2) (2008)Google Scholar
  17. 17.
    Hintermüller, M., Hoppe, R., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESIAM Control Optim. Calc. Var. 14(3), 540–560 (2008)MATHCrossRefGoogle Scholar
  18. 18.
    Hoppe, R., Iliash, Y., Iyyunni, C., Sweilam, N.: A posteriori error estimates for adaptive finite element discretizations of boundary control problems. J. Numer. Math. 14(1), 57–82 (2006)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. de Gruyter, Berlin, New York (2008)Google Scholar
  20. 20.
    Kröner, A., Vexler, B.: A priori error estimates for elliptic optimal control problems with bilinear state equation. J. Comput. Appl. Math. 230(2), 251–284 (2009)CrossRefGoogle Scholar
  21. 21.
    Lang, J.: Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, and Applications, Lecture Notes in Earth Sci., vol. 16. Springer-Verlag, Berlin (1999)Google Scholar
  22. 22.
    Li, R., Liu, W., Ma, H., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41(5), 1321–1349 (2002)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations, Grundlehren Math. Wiss., vol. 170. Springer-Verlag, Berlin (1971)Google Scholar
  24. 24.
    Liu, W., Yan, N.: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math 15(1–4), 285–309 (2001)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Meidner, D.: Adaptive space-time finite element methods for optimization problems governed by nonlinear parabolic systems. PhD Thesis, Ruprecht-Karls-Universität Heidelberg (2008)Google Scholar
  26. 26.
    Meidner, D., Vexler, B.: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46(1), 116–142 (2007)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Rannacher, R., Vexler, B.: A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM J. Control Optim. 44(5), 1844–1863 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Schmich, M., Vexler, B.: Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations. SIAM J. Sci. Comput. 30(1), 369–393 (2008)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Thomée, V.: Galerkin finite element methods for parabolic problems. Springer, Berlin (2006)MATHGoogle Scholar
  30. 30.
    Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen. Friedr. Vieweg & Sohn Verlag, Wiesbaden (2010)Google Scholar
  31. 31.
    Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley/Teubner, New York-Stuttgart (1996)MATHGoogle Scholar
  32. 32.
    Vexler, B.: Adaptive finite elements for parameter identification problems. PhD Thesis, Institut für Angewandte Mathematik, Universität Heidelberg (2004)Google Scholar
  33. 33.
    Vexler, B., Wollner, W.: Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optim. 47(1), 509–534 (2008)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Lehrstuhl für Mathematische Optimierung, Technische Universität MünchenFakultät für MathematikGarching b. MünchenGermany

Personalised recommendations