Anomaly Detection via Coupled Gaussian Kernels

  • Guichong Li
  • Nathalie Japkowicz
  • Lian Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7310)


Anomaly detection using One-Class Support Vector Machine (OCSVM) have attracted wide attention in practical applications. Recent research focuses on enhancing OCSVM using either ensemble learning techniques or Multiple Kernel Learning (MKL) since single kernels such as the Gaussian Radial-Based Function (GRBF) kernel might not be flexible enough to construct a proper feature space. In this paper, we develop a new kernel, called centralized GRBF. Further, the two GRBF and centralized GRBF are combined by using a new ensemble kernel technique, called Coupled Ensemble-Kernels (CEK), to improve OCSVM for anomaly detection. Therefore, the final classification model is itself a large-margin classifier while it is actually an ensemble classifier coined with two sub-large-margin models. We show that the proposed CEK outperforms previous approaches using traditional ensemble learning methods and MKL for anomaly detection.


Anomaly Detection Kernel-Based Methods One-Class Support Vector Machine Multiple Kernel Learning Ensemble Learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. ACM Computing Surveys 41 (2009)Google Scholar
  2. 2.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001),
  3. 3.
    Li, G., Japkowicz, N., Hoffman, I., Kurt Ungar, R.: Probability estimation by maximum and minimum probability score in one-class learning for anomaly detection. In: Proc. of the NASA Conference on Intelligent Data Understanding, CIDU (2010)Google Scholar
  4. 4.
    Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008)zbMATHCrossRefGoogle Scholar
  5. 5.
    Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press (2011)Google Scholar
  6. 6.
    Kim, H., Pang, S., Je, H., Kim, D., Yang Bang, S.: Constructing support vector machine ensemble. Pattern Recognition 36(12) (2003)Google Scholar
  7. 7.
    Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.: Learning the kernel matrix with semidefinite programming. JMLR 5 (2004)Google Scholar
  8. 8.
    Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: SimpleMKL. J. Mach. Learn. Res. 9, 2491–2521 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comp. 13, 1443–1471 (2001)zbMATHCrossRefGoogle Scholar
  10. 10.
    Schölkopf, B.: The kernel trick for distances. In: NIPS, pp. 301–307 (2000)Google Scholar
  11. 11.
    Shieh, A.D., Kamm, D.F.: Ensembles of One Class Support Vector Machines. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 181–190. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Tax, D.M.J.: One-class classification; concept-learning in the absence of counter-examples. Ph.D. thesis, Delft University of Technology (2001)Google Scholar
  13. 13.
    Zhang, K., Fan, W., Yuan, X.J., Davidson, I., Li, X.S.: Forecasting Skewed Biased Stochastic Ozone Days: Analyses and Solutions. In: Proceedings of the International Conference on Data Ming, pp. 753–764 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guichong Li
    • 1
  • Nathalie Japkowicz
    • 1
  • Lian Yang
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada

Personalised recommendations