Macro Learning in Planning as Parameter Configuration

  • Maher Alhossaini
  • J. Christopher Beck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7310)


In AI planning, macro learning is the task of finding sub-sequences of operators that can be added to the planning domain to improve planner performance. Typically, a single set is added to the domain for all problem instances. A number of techniques have been developed to generate such a macro set based on offline analysis of problem instances. We build on recent work on instance-specific and fixed-set macros, and recast the macro generation problem as parameter configuration: the macros in a domain are viewed as parameters of the planning problem. We then apply an existing parameter configuration system to reconfigure a domain either once or per problem instance. Our empirical results demonstrate that our approach outperforms existing macro acquisition and filtering tools. For instance-specific macros, our approach almost always achieves equal or better performance than a complete evaluation approach, while often being an order of magnitude faster offline.


Planning Macro Learning Parameter Configuration Machine Learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhossaini, M., Beck, J.C.: Learning Instance-Specific Macros. In: ICAPS 2009 Workshop on Planning and Learning (2009)Google Scholar
  2. 2.
    Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the f-race algorithm: Sampling design and iterative refinement. Hybrid Metaheuristics, 108–122 (2007)Google Scholar
  3. 3.
    Botea, A., Enzenberger, M., Muller, M., Schaeffer, J.: Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators. Journal of Artificial Intelligence Research 24, 581–621 (2005)zbMATHGoogle Scholar
  4. 4.
    Cohen, P.R.: Empirical Methods for Artificial Intelligence. The MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  5. 5.
    Coles, A., Smith, A.: Marvin: A heuristic search planner with online macro-action learning. Journal of Artificial Intelligence Research 28(1), 119–156 (2007)zbMATHGoogle Scholar
  6. 6.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kaufmann, Elsevier Science (2004)Google Scholar
  7. 7.
    Hoffmann, J.: Analyzing search topology without running any search: On the connection between causal graphs and h+. The Journal of Artificial Intelligence Research 41, 155–229 (2011)zbMATHGoogle Scholar
  8. 8.
    Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation Through Heuristic Search. Journal of Artificial Intelligence Research 14, 253–302 (2001)zbMATHGoogle Scholar
  9. 9.
    Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36(1), 267–306 (2009)zbMATHGoogle Scholar
  10. 10.
    Newton, M.: Wizard: Learning Macro-Actions Comprehensively for Planning. PhD thesis, Department of Computer and Information Science, University of Strathclyde, United Kingdom (November 2008)Google Scholar
  11. 11.
    Newton, M., Levine, J., Fox, M., Long, D.: Learning macro-actions for arbitrary planners and domains. In: Proceedings of the ICAPS (2007)Google Scholar
  12. 12.
    Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods, pp. 185–208. MIT Press (1999)Google Scholar
  13. 13.
    Witten, I., Frank, E.: Data mining: practical machine learning tools and techniques with Java implementations. ACM SIGMOD Record 31, 76–77 (2002)CrossRefGoogle Scholar
  14. 14.
    Yoon, S., Fern, A., Givan, R.: Learning control knowledge for forward search planning. The Journal of Machine Learning Research 9, 683–718 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Younes, H., Simmons, R.: VHPOP: Versatile heuristic partial order planner. Journal of Artificial Intelligence Research 20(1), 405–430 (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maher Alhossaini
    • 1
  • J. Christopher Beck
    • 2
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.Department of Mechanical & Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations