Making Life Easier for Firefighters

  • Fedor V. Fomin
  • Pinar Heggernes
  • Erik Jan van Leeuwen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7288)


Being a firefighter is a tough job, especially when tight city budgets do not allow enough firefighters to be on duty when a fire starts. This is formalized in the Firefighter problem, which aims to save as many vertices of a graph as possible from a fire that starts in a vertex and spreads through the graph. In every time step, a single additional firefighter may be placed on a vertex, and the fire advances to each vertex in its neighborhood that is not protected by a firefighter. The problem is notoriously hard: it is NP-hard even when the input graph is a bipartite graph or a tree of maximum degree 3, it is W[1]-hard when parameterized by the number of saved vertices, and it is NP-hard to approximate within n1 − ε for any ε > 0. We aim to simplify the task of a firefighter by providing algorithms that show him/her how to efficiently fight fires in certain types of networks. We show that Firefighter can be solved in polynomial time on various well-known graph classes, including interval graphs, split graphs, permutation graphs, and Pk-free graphs for fixed k. On the negative side, we show that the problem remains NP-hard on unit disk graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anshelevich, E., Chakrabarty, D., Hate, A., Swamy, C.: Approximation Algorithms for the Firefighter Problem: Cuts over Time and Submodularity. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 974–983. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bazgan, C., Chopin, M., Fellows, M.R.: Parameterized Complexity of the Firefighter Problem. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 643–652. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Bouchitté, V., Todinca, I.: Approximating the treewidth of AT-free graphs. Discrete Applied Math. 131, 11–37 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999)Google Scholar
  5. 5.
    Broersma, H., Kloks, T., Kratsch, D., Müller, H.: A Generalization of AT-free Graphs and a Generic Algorithm for Solving Treewidth, Minimum Fill-In and Vertex Ranking. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 88–99. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Cai, L., Verbin, E., Yang, L.: Firefighting on Trees (1 − 1/e)–Approximation, Fixed Parameter Tractability and a Subexponential Algorithm. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 258–269. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Chalermsook, P., Chuzhoy, J.: Resource minimization for fire containment. In: SODA 2010, pp. 1334–1349. SIAM (2010)Google Scholar
  8. 8.
    Cygan, M., Fomin, F.V., van Leeuwen, E.J.: Parameterized Complexity of Firefighting Revisited. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 13–26. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer (1999)Google Scholar
  10. 10.
    Finbow, S., King, A., MacGillivray, G., Rizzi, R.: The firefighter problem for graphs of maximum degree three. Discrete Math. 307(16), 2094–2105 (2007)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions and questions. Australas J. Combin. 43, 57–77 (2009)MathSciNetMATHGoogle Scholar
  12. 12.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, vol. 57. North-Holland Publishing Co. (2004)Google Scholar
  13. 13.
    Hartnell, B.L.: Firefighter! an application of domination. In: 25th Manitoba Conference on Combinatorial Mathematics and Computing (1995)Google Scholar
  14. 14.
    Hartnell, B.L., Li, Q.: Firefighting on trees: how bad is the greedy algorithm? In: Thirty-first Southeastern International Conference on Combinatorics, Graph Theory and Computing, Congr. Numer., vol. 145, pp. 187–192 (2000)Google Scholar
  15. 15.
    MacGillivray, G., Wang, P.: On the firefighter problem. J. Combin. Math. Combin. Comput. 47, 83–96 (2003)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fedor V. Fomin
    • 1
  • Pinar Heggernes
    • 1
  • Erik Jan van Leeuwen
    • 2
  1. 1.Department of InformaticsUniversity of BergenNorway
  2. 2.Dept. Computer and System SciencesUniversity of Rome “La Sapienza”Italy

Personalised recommendations