Rough Sets and Neuroscience

  • Tomasz G. SmolinskiEmail author
  • Astrid A. Prinz
Part of the Intelligent Systems Reference Library book series (ISRL, volume 43)


It has been almost exactly 10 years since the publication of the Neurocomputing Special Volume on Rough-Neuro Computing, and nearly 8 years since the seminal book “Rough-Neural Computing” came out. Rough-Neuro (or Neural) Computing (RNC) generalizes traditional artificial neural networks by incorporating the concepts of information granularity and computing with words. It provides solid theoretical foundations for hybridization of neural computing with the theory of rough sets, as well as rough mereology, and has many interesting practical applications. Interestingly, while the RNC paradigms directly or indirectly draw extensively from the field of neuroscience, not many applications of the theory of rough sets (in the form of RNC or otherwise) to solve problems in that field exist. This is somewhat surprising as many problems in neuroscience are inherently vague and/or ill-defined and could potentially significantly benefit from the rough sets’ ability to deal with imprecise data, and those applications that have been proposed, have been very successful. In this chapter, we describe a few examples of the existing applications of the theory of rough sets (and its hybridizations) in the field of neuroscience and its clinical “sister,” neurology. We also provide a discussion of other potential applications of rough sets in those areas. Finally, we speculate on how the new insights into the field of neuroscience derived with the help of rough sets may help improve RNC, thus closing the loop between the two fields.


Rough sets rough-neuro computing neuroscience neurology classificatory decomposition neuronal modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, L.F.: Lapique’s introduction of the integrate-and-fire model neuron (1907). Brain Research Bulletin 50(5/6), 303–304 (1999)CrossRefGoogle Scholar
  2. 2.
    Blume, W., Lüders, H., Mizrahi, E., Tassinari, C., van Emde Boas, W., Engel, J.: Glossary of descriptive terminology for ictal semiology: report of the ILAE task force on classification and terminology. Epilepsia 42(9), 1212–1218 (2001)CrossRefGoogle Scholar
  3. 3.
    Breedlove, M., Watson, N.V., Rosenzweig, M.R.: Biological Psychology: An Introduction to Behavioral and Cognitive Neuroscience, 5th edn. Sinauer Associates, Inc. (2007)Google Scholar
  4. 4.
    Czyzewski, A.: Intelligent acquisition of audio signals employing neural networks and rough sets algotithms. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing, pp. 521–542. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press (2001)Google Scholar
  6. 6.
    Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Proc. 12th International Conference on Machine Learning, Tahoe City, CA, pp. 194–202 (1995)Google Scholar
  7. 7.
    Fee, M.S., Mitra, P.P., Kleinfeld, D.: Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J. Neurosci. Methods 69, 175–188 (1996)CrossRefGoogle Scholar
  8. 8.
    Flury, B.: Common Principal Components and Related Multivariate Models. John Wiley & Sons (1988)Google Scholar
  9. 9.
    Günay, C., et al.: Computational Intelligence in Electrophysiology: Trends and Open Problems. SCI, vol. 122, pp. 325–359 (2008)Google Scholar
  10. 10.
    Günay, C., Prinz, A.A.: Model calcium sensors for network homeostasis: Sensor and readout parameter analysis from a database of model neuronal networks. J. Neuroscience 30(5), 1686–1698 (2010)CrossRefGoogle Scholar
  11. 11.
    Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)Google Scholar
  12. 12.
    Hyvarinen, A., Oja, E.: Independent component analysis: Algorithms and applications. Neural Networks 13, 411–430 (2000)CrossRefGoogle Scholar
  13. 13.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. J. of Computer and System Sciences 9, 256–278 (1974)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill (2000)Google Scholar
  15. 15.
    Khorkova, O., Golowasch, J.: Neuromodulators, not activity, control coordinated expression of ionic currents. J. Neuroscience 27(32), 8709–8718 (2007)CrossRefGoogle Scholar
  16. 16.
    Kimble, D.P.: Biological Psychology. Holt, Rinehart, and Winston, Inc. (1988)Google Scholar
  17. 17.
    Kobashi, S., Kondo, K., Hata, Y.: Rough sets based medical image segmentation with connectedness. In: Proc. 5th Int. Forum on Multimedia and Image Processing, pp. 197–202 (2004)Google Scholar
  18. 18.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98 (1999)Google Scholar
  19. 19.
    Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)zbMATHGoogle Scholar
  20. 20.
    Laumanns, M., Zitzler, E., Thiele, L.: A unified model for multi-objective evolutionary algorithms with elitism. In: Proc. Congress on Evolutionary Computation, pp. 46–53 (2000)Google Scholar
  21. 21.
    Lawrence, S., Burns, I., Back, A., Tsoi, A.C., Giles, C.L.: Neural Network Classification and Prior Class Probabilities. In: Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 299–314. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Marder, E., Goaillard, J.M.: Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience 7(7), 563–574 (2006)CrossRefGoogle Scholar
  23. 23.
    Marek, W., Pawlak, Z.: Rough Sets and Information Systems. Fundamenta Informaticae 17, 105–115 (1984)MathSciNetGoogle Scholar
  24. 24.
    Milanova, M.G., Smolinski, T.G., Boratyn, G.M., Żurada, J.M., Wrobel, A.: Sparse Correlation Kernel Analysis and Evolutionary Algorithm-Based Modeling of the Sensory Activity within the Rat’s Barrel Cortex. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 198–212. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Miller, J.P., Selverston, A.I.: Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons. J. Neurophysiology 48(6), 1378–1391 (1982)Google Scholar
  26. 26.
    Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys J. 35(1), 193–213 (1981)CrossRefGoogle Scholar
  27. 27.
    Øhrn A.: ROSETTA Technical Reference Manual (2001) (retrieved May 6, 2011),
  28. 28.
    Pal, S.K, Pedrycz, W., Skowron, A., Swiniarski, R. (eds.): Special Volume: Rough-neuro Computing. Neurocomputing 36 (2001)Google Scholar
  29. 29.
    Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing. Springer (2003)Google Scholar
  30. 30.
    Orłowska, E., Pawlak, Z.: Representation of nondeterministic information. Theoretical Computer Science 29, 27–39 (1984)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pawlak, Z.: Rough Sets. International J. of Computer and Information Sciences 11, 341–356 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Pawlak, Z.: Rough sets - Theoretical aspects of reasoning about data. Kluwer (1991)Google Scholar
  33. 33.
    Peters, J.F., Skowron, A., Han, L., Ramanna, S.: Towards Rough Neural Computing Based on Rough Membership Functions: Theory and Application. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 611–618. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  34. 34.
    Polkowski, L., Skowron, A.: Rough-Neuro Computing. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 57–64. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  35. 35.
    Prinz, A.A., Abbott, L.F., Marder, E.: The Dynamic Clamp Comes of Age. Trends in Neuroscience 27, 218–224 (2004)CrossRefGoogle Scholar
  36. 36.
    Przybyszewski, A.W.: The Neurophysiological Bases of Cognitive Computation Using Rough Set Theory. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 287–317. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  37. 37.
    Ropper, A., Samuels, M.: Adams and Victor’s Principles of Neurology, 9th edn. McGraw-Hill Professional (2009)Google Scholar
  38. 38.
    Schulz, D.J., Goaillard, J.-M., Marder, E.: Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. PNAS 104(32), 13187–13191 (2007)CrossRefGoogle Scholar
  39. 39.
    Selverston, A.I., Miller, J.P.: Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. I. Pyloric system. J. Neurophysiology 44(6), 1102–1121 (1980)Google Scholar
  40. 40.
    Simon, R., Greenberg, D., Aminoff, M.: Clinical Neurology, 7th edn. McGraw-Hill Professional (2009)Google Scholar
  41. 41.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Smolinski, T.G., Boratyn, G.M., Milanova, M.G., Żurada, J.M., Wrobel, A.: Evolutionary Algorithms and Rough Sets-Based Hybrid Approach to Classificatory Decomposition of Cortical Evoked Potentials. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 621–628. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  43. 43.
    Smolinski, T.G., Chenoweth, D.L., Zurada, J.M.: Time Series Prediction Using Rough Sets and Neural Networks Hybrid Approach. In: Castillo, O. (ed.) Proc. IASTED International Conference on Neural Networks and Computational Intelligence (NCI 2003), pp. 108–111 (2003)Google Scholar
  44. 44.
    Smolinski, T.G.: Classificatory Decomposition for Time Series Classification and Clustering. PhD thesis, Univ. of Louisville, Louisville (2004)Google Scholar
  45. 45.
    Smolinski, T.G., Milanova, M.G., Boratyn, G.M., Buchanan, R., Prinz, A.A.: Multi-Objective Evolutionary Algorithms and Rough Sets for Decomposition and Analysis of Cortical Evoked Potentials. In: Proc. IEEE International Conference on Granular Computing (GrC 2006), pp. 635–638 (2006)Google Scholar
  46. 46.
    Smolinski, T.G., Boratyn, G.M., Milanova, M.G., Buchanan, R., Prinz, A.A.: Hybridization of Independent Component Analysis, Rough Sets, and Multi-Objective Evolutionary Algorithms for Classificatory Decomposition of Cortical Evoked Potentials. In: Rajapakse, J.C., Wong, L., Acharya, R. (eds.) PRIB 2006. LNCS (LNBI), vol. 4146, pp. 174–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  47. 47.
    Smolinski, T.G., Soto-Treviño, C., Rabbah, P., Nadim, F., Prinz, A.A.: Analysis of biological neurons via modeling and rule mining. International J. of Information Technology and Intelligent Computing 1(2), 293–302 (2006)Google Scholar
  48. 48.
    Smolinski, T.G., Soto-Treviño, C., Rabbah, P., Nadim, F., Prinz, A.A.: Computational exploration of a multi-compartment model of the AB neuron in the lobster pyloric pacemaker kernel. BMC Neuroscience 9(suppl. 1), P53 (2008)CrossRefGoogle Scholar
  49. 49.
    Smolinski, T.G., Prinz, A.A.: Rough Sets for Solving Classification Problems in Computational Neuroscience. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 620–629. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  50. 50.
    Soto-Treviño, C., Rabbah, P., Marder, E., Nadim, F.: Computational model of electrically coupled, intrinsically distinct pacemaker neurons. J. Neurophysiology 94(2), 590–604 (2005)CrossRefGoogle Scholar
  51. 51.
    Sulaiman, S., Shamsuddin, S.M., Abraham, A.: Rough Neuro-PSO Web Caching and XML Prefetching for Accessing Facebook from Mobile Environment. In: Proc. 8th International Conference on Computer Information Systems and Industrial Management (CISIM 2009), pp. 884–889. IEEE Computer Society Press (2009)Google Scholar
  52. 52.
    Szczuka, M., Wojdyłło, P.: Neuro-Wavelet Classifiers for EEG Signals Based on Rough Set Methods. In: Pal, S.K., Pedrycz, W., Skowron, A., Swiniarski, R. (eds.) Special Volume: Rough-neuro Computing. Neurocomputing, vol. 36, pp. 103–122 (2001)Google Scholar
  53. 53.
    Tsumoto, S.: Computational Analysis of Acquired Dyslexia of Kanji Characters Based on Conventional and Rough Neural Networks. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing, pp. 637–648. Springer, Heidelberg (2003)Google Scholar
  54. 54.
    Tulinius, M.H., Holme, E., Kristianson, B.: Mitochondrial encephalomyopathies in childhood: 1. Biochemical and morphologic investigations. J. Pediatrics 119, 242–250 (1991)CrossRefGoogle Scholar
  55. 55.
    Tulinius, M.H., Holme, E., Kristianson, B.: Mitochondrial encephalomyopathies in childhood: 2. Clinical manifestation and syndromes. J. Pediatrics 119, 251–259 (1991)CrossRefGoogle Scholar
  56. 56.
    Vinterbo, S., Øhrn, A.: Minimal approximate hitting sets and rule templates. International J. of Approximate Reasoning 25(2), 123–143 (2000)zbMATHCrossRefGoogle Scholar
  57. 57.
    Wakulicz-Deja, A., Paszek, P.: Applying rough set theory to multi stage medical diagnosing. Fundamenta Informaticae 54(4), 387–408 (2003)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Widz, S., Revett, K., Ślęzak, D.: Application of rough set based dynamic parameter optimization to MRI segmentation. In: Proc. 23rd Int. Conference of the North American Fuzzy Information Processing Society, pp. 440–445 (2004)Google Scholar
  59. 59.
    Wróblewski, J.: Finding minimal reducts using genetic algorithms. In: Proc. 2nd Annual Joint Conference on Information Sciences, pp. 186–189 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Computer and Information SciencesDelaware State UniversityDoverUSA
  2. 2.Department of BiologyEmory UniversityAtlantaUSA

Personalised recommendations