A Rigorous Error Analysis of Coupled FEM-BEM Problems with Arbitrary Many Subdomains

Abstract

In this article, we provide a rigorous a priori error estimate for the symmetric coupling of the finite and boundary element method for the potential problem in three dimensions. Our theoretical framework allows an arbitrary number of polyhedral subdomains. Our bound is not only explicit in the mesh parameter, but also in the subdomains themselves: the bound is independent of the number of subdomains and involves only the shape regularity constants of a certain coarse triangulation aligned with the subdomain decomposition. The analysis includes the so-called BEM-based FEM as a limit case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Texts in Applied Mathematics, vol. 15. Springer, New York (2002)MATHGoogle Scholar
  2. 2.
    Ciarlet, P.G.: The finite element method for elliptic problems. Studies in Mathematics and its Applications, vol. 4. North-Holland, Amsterdam (1987)Google Scholar
  3. 3.
    Copeland, D., Langer, U., Pusch, D.: From the boundary element method to local Trefftz finite element methods on polyhedral meshes. In: Bercovier, M., Gander, M.J., Kornhuber, R., Widlund, O. (eds.) Domain Decomposition Methods in Science and Engineering XVIII. Lecture Notes in Computational Science and Engineering, vol. 70, pp. 315–322. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Copeland, D.M.: Boundary-element-based finite element methods for Helmholtz and Maxwell equations on general polyhedral meshes. Int. J. Appl. Math. Comput. Sci. 5(1), 60–73 (2009)MathSciNetGoogle Scholar
  5. 5.
    Costabel, M.: Symmetric methods for the coupling of finite elements and boundary elements. In: Brebbia, C., Wendland, W.L., Kuhn, G. (eds.) Boundary Elements IX, pp. 411–420. Springer, Heidelberg (1987)Google Scholar
  6. 6.
    Costabel, M.: Some historical remarks on the positivity of boundary integral operators. In: Schanz, M., Steinbach, O. (eds.) Boundary Element Analysis - Mathematical Aspects and Applications. LNACM, vol. 29, pp. 1–27. Springer, Berlin (2007)CrossRefGoogle Scholar
  7. 7.
    Costabel, M., Stephan, E.P.: Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM J. Numer. Anal. 27, 1212–1226 (1990)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Farhat, C., Roux, F.X.: A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Meth. Engrg. 32, 1205–1227 (1991)MATHCrossRefGoogle Scholar
  9. 9.
    Farhat, C., Lesoinne, M., Le Tallec, P., Pierson, K., Rixen, D.: FETI-DP: A dual-primal unified FETI method I: A faster alternative to the two-level FETI method. Int. J. Numer. Meth. Engrg. 50, 1523–1544 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Hofreither, C.: L 2 error estimates for a nonstandard finite element method on polyhedral meshes. J. Numer. Math. 19(1), 27–39 (2011)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Hofreither, C., Langer, U., Pechstein, C.: Analysis of a non-standard finite element method based on boundary integral operators. Electron. Trans. Numer. Anal. 37, 413–436 (2010)MathSciNetMATHGoogle Scholar
  12. 12.
    Hsiao, G.C., Wendland, W.L.: A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58, 449–481 (1977)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Hsiao, G.C., Wendland, W.L.: Domain decomposition in boundary element methods. In: Proceedings of the Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 41–49. SIAM, Philadelphia (1991)Google Scholar
  14. 14.
    Hsiao, G.C., Steinbach, O., Wendland, W.L.: Domain decomposition methods via boundary integral equations. J. Comput. Appl. Math. 125, 521–537 (2000)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Langer, U.: Parallel iterative solution of symmetric coupled FE/BE- equations via domain decomposition. Contemporary Mathematics 157, 335–344 (1994)CrossRefGoogle Scholar
  16. 16.
    Langer, U., Steinbach, O.: Boundary element tearing and interconnecting method. Computing 71(3), 205–228 (2003)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Langer, U., Steinbach, O.: Coupled boundary and finite element tearing and interconnecting methods. In: Kornhuber, R., Hoppe, R., Periaux, J., Pironneau, O., Widlund, O.B., Xu, J. (eds.) Domain Decomposition in Science and Engineering XV. Lecture Notes in Computational Sciences and Engineering, vol. 40, pp. 83–97. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Langer, U., Steinbach, O.: Coupled finite and boundary element domain decomposition methods. In: Schanz, M., Steinbach, O. (eds.) Boundary Element Analysis - Mathematical Aspects and Applications. LNACM, vol. 29, pp. 61–95. Springer, Berlin (2007)CrossRefGoogle Scholar
  19. 19.
    Langer, U., Of, G., Steinbach, O., Zulehner, W.: Inexact data-sparse boundary element tearing and interconnecting methods. SIAM J. Sci. Comp. 29, 290–314 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  21. 21.
    Of, G.: BETI-Gebietszerlegungsmethoden mit schnellen Randelementverfahren und Anwendungen. PhD thesis, Universität Stuttgart, Germany (2006)Google Scholar
  22. 22.
    Of, G.: The all-floating BETI method: Numerical results. In: Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W. (eds.) Operating Systems. Lecture Notes in Computational Science and Engineering, vol. 60, pp. 295–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Of, G., Steinbach, O.: The all-floating boundary element tearing and interconnecting method. J. Numer. Math. 17(4), 277–298 (2009)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Pechstein, C.: BETI-DP methods in unbounded domains. In: Kunisch, K., Of, G., Steinbach, O. (eds.) Numerical Mathematics and Advanced Applications – Proceedings of the 7th European Conference on Numerical Mathematics and Advanced Applications, Graz, Austria, September 2007, pp. 381–388. Springer, Heidelberg (2008)Google Scholar
  25. 25.
    Pechstein, C.: Finite and boundary tearing and interconnecting methods for multiscale elliptic partial differential equations. PhD thesis, Johannes Kepler University, Linz (2008)Google Scholar
  26. 26.
    Pechstein, C.: Boundary element tearing and interconnecting methods in unbounded domains. Appl. Numer. Math. 59(11), 2824–2842 (2009)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Pechstein, C.: Shape-explicit constants for some boundary integral operators. Appl. Anal. (to appear, 2012); available online December 2011, doi:10.1080/00036811.2011.643781Google Scholar
  28. 28.
    Pechstein, C., Scheichl, R.: Weighted Poincaré inequalities. NuMa-Report 2010-10, Institute of Computational Mathematics, Johannes Kepler University Linz, Austria (2010) (submitted)Google Scholar
  29. 29.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Math Series, vol. 30. Princeton University Press, Princeton (1970)MATHGoogle Scholar
  30. 30.
    Steinbach, O.: Stability estimates for hybrid coupled domain decomposition methods. Lecture Notes in Mathematics, vol. 1809. Springer, Heidelberg (2003)MATHCrossRefGoogle Scholar
  31. 31.
    Steinbach, O.: Numerical approximation methods for elliptic boundary value problems – Finite and boundary elements. Springer, New York (2008)MATHCrossRefGoogle Scholar
  32. 32.
    Steinbach, O.: A note on the stable one-equation coupling of finite and boundary elements. SIAM J. Numer. Anal. 49, 1521–1531 (2011)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Steinbach, O., Wendland, W.L.: On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262(2), 733–748 (2001)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Toselli, A., Widlund, O.B.: Domain Decoposition Methods – Algorithms and Theory. Series in Computational Mathematics, vol. 34. Springer, Heidelberg (2005)Google Scholar
  35. 35.
    Trefftz, E.: Ein Gegenstück zum Ritz’schen Verfahren. In: Proc. Ind. Int. Cong. Appl. Mech., Zurich, pp. 131–137 (1926)Google Scholar
  36. 36.
    Veeser, A., Verfürth, R.: Poincaré constants of finite element stars. IMA. J. Numer. Anal. (2011); published online May 30, doi:10.1093/imanum/drr011Google Scholar
  37. 37.
    Weißer, S.: Residual error estimate for BEM-based FEM on polygonal meshes. Numer. Math. 118(4), 765–788 (2011)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Zienkiewicz, O.C., Kelly, D.M., Bettess, P.: The coupling of the finite element method and boundary solution procedures. Int. J. Numer. Meth. Eng. 11, 355–375 (1977)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für Numerische MathematikJohannes Kepler Universität LinzLinzAustria
  2. 2.Doctoral Program “Computational Mathematics”Johannes Kepler Universität LinzLinzAustria

Personalised recommendations