Application of the Reciprocity Principle for the Determination of Planar Cracks in Piezoelectric Material

Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 66)

Abstract

This paper provides an extension of the reciprocity gap approach for crack detection from electrostatics [1], isotropic [2] and anisotropic linear elasticity [18] to piezoelectric materials. We show unique and stable identifiability of the crack plane fromone or two pairs of appropriate Dirichlet-Neumann data and illustrate the approach by numerical tests with simulated data obtained by adaptive finite element computations.

Keywords

Outer Boundary Piezoelectric Material Load Case LIPSCHITZ Domain Elastic Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrieux, S., Ben Abda, A.: Identification of planar cracks by complete over determined data: inversion formulae. Inverse Problems 12, 553–563 (1996)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Andrieux, S., Ben Abda, A., Bui, H.D.: Reciprocity principle and crack identification. Inverse Problems 15, 59–65 (1999)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bamberger, A., Glowinski, R., Tran, Q.H.: A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change. SIAM J. Numer. Anal. 34, 603–639 (1997)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Eibner, T.: Randkonzentrierte und adaptive hp-FEM. Dissertation, TU Chemnitz (2006)Google Scholar
  5. 5.
    Friedman, A., Vogelius, M.: Determining cracks by boundary measurements. Indiana Math. J. 8, 527–556 (1989)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hao, T.H., Shen, Z.Y.: A new electric boundary condition of electric fracture mechanics and its applications. Engrg. Fracture Mech. 47, 793–802 (1994)CrossRefGoogle Scholar
  7. 7.
    Kemmer, G., Balke, H.: Krafteinwirkungen auf die Flanken nichtleitender Risse in Piezoelektrika. ZAMM 79(S2), 509–510 (1999)Google Scholar
  8. 8.
    Khoromskij, B.N., Melenk, J.M.: Boundary concentrated FEM. SIAM J. Numer. Anal. 41, 1–36 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Knees, D.: Regularity results for transmission problems for the Laplace and Lamé operators on polygonal or polyhedral domains. SFB 404, Bericht 2002/10, Universität Stuttgart (2002)Google Scholar
  10. 10.
    Korneev, V.G., Langer, U.: Domain Decomposition and Preconditioning. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, Part I, ch.19. John Wiley & Sons (2004)Google Scholar
  11. 11.
    Kunert, G., Verfürth, R.: Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86, 283–303 (2000)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Lenk, A.: Elektromechanische Systeme, Band 2 (Systeme mit verteilten Parametern). VEB Verlag Technik, Berlin (1974)Google Scholar
  13. 13.
    Meyer, A.: Programmer’s Manual for Adaptive Finite Element Code SPC-PM 2Ad. Preprintreihe des SFB 393, Preprint 01-18, TU Chemnitz (2001)Google Scholar
  14. 14.
    Meyer, A., Steinhorst, P.: Modellierung und Numerik wachsender Risse bei piezoelektrischem Material. Preprint CSC/10-01, TU Chemnitz (2010)Google Scholar
  15. 15.
    Park, S.B., Sun, C.T.: Effect of electric field on fracture of piezoelectric ceramics. Internat. J. Fract. 70, 203–216 (1995)CrossRefGoogle Scholar
  16. 16.
    Scherzer, M., Kuna, M.: Combined analytical and numerical solution of 2D interface corner configurations between dissimilar piezoelectric materials. Internat. J. Fract. 127, 61–99 (2004)MATHCrossRefGoogle Scholar
  17. 17.
    Steinhorst, P.: Anwendung adaptiver FEM für piezoelektrische und spezielle mechanische Probleme. Dissertation, TU Chemnitz (2009)Google Scholar
  18. 18.
    Steinhorst, P., Sändig, A.–M.: Reciprocity principle for the detection of planar cracks in anisotropic elastic material. Preprint IANS-2010/011, Universität Stuttgart (2010)Google Scholar
  19. 19.
    Valean, A.: Identifikation von planaren Rissen in der Piezoelektrizität. Diplomarbeit, Universität Stuttgart (2010)Google Scholar
  20. 20.
    Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Chichester (1996)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für MathematikAlpen-Adria-Universität KlagenfurtKlagenfurtAustria

Personalised recommendations