Boundary Element Method for Linear Elasticity with Conservative Body Forces

  • Heiko Andrä
  • Richards Grzhibovskis
  • Sergej Rjasanow
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 66)

Abstract

A boundary integral formulation for a mixed boundary value problem in linear elastostatics with a conservative right hand side is considered. A meshless interpolant of the scalar potential of the volume force density is constructed by means of radial basis functions. An exact particular solution to the Lamé system with the gradient of this interpolant as the right hand side is found. Thus, the need of approximating the Newton potential is eliminated. The procedure is illustrated on numerical examples.

Keywords

Boundary Value Problem Radial Basis Function Body Force Boundary Element Method Linear Elasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bambach, M., Grzhibovskis, R., Hirt, G., Rjasanow, S.: Adaptive cross approximation for surface reconstruction based on radial basis functions. J. Eng. Math. 62, 149–160 (2008)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ahmed, S., Banerjee, P.: Free vibration analysis of bem using particular integrals. J. Eng. Mech. 112, 682–695 (1986)CrossRefGoogle Scholar
  3. 3.
    Barber, J.: Body forces. In: Elasticity, Solid Mechanics and Its Applications, vol. 172, pp. 91–108. Springer, Netherlands (2010)Google Scholar
  4. 4.
    Beatson, R., Newsam, G.: Fast evaluation of radial basis functions. I. Comput. Math. Appl. 24(12), 7–19 (1992)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Beatson, R., Cherrie, J., Mouat, C.: Fast fitting of radial basis functions: methods based on preconditioned GMRES iteration. Adv. Comput. Math. 11(2-3), 253–270 (1999)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Beatson, R., Newsam, G.: Fast evaluation of radial basis functions: moment-based methods. SIAM J. Sci. Comput. 19(5), 1428–1449 (1998)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bebendorf, M., Grzhibovskis, R.: Accelerating Galerkin BEM for Linear Elasticity using Adaptive Cross Approximation. Math. Meth. Appl. Sci. 29, 1721–1747 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bebendorf, M., Rjasanow, S.: Adaptive Low-Rank Approximation of Collocation Matrices. Computing 70, 1–24 (2003)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Brebbia, C., Nowak, A.: Treatment of domain integrals by using the dual and multiple reciprocity methods. In: Discretization methods in structural mechanics (Vienna, 1989), pp. 13–28. Springer, Berlin (1990)CrossRefGoogle Scholar
  11. 11.
    Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)Google Scholar
  12. 12.
    Chen, C., Brebbia, C., Power, H.: Dual reciprocity method using compactly supported radial basis functions. Comm. Numer. Meth. Engrg. 15(2), 137–150 (1999)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Ciarlet, P.: Mathematical elasticity, vol. 1: Three-dimensional elasticity. North-Holland (1988)Google Scholar
  14. 14.
    Cruse, T.: Boundary integral equation method for three dimension. Tech. rep., AFOSR-TR-75 0813 (1975)Google Scholar
  15. 15.
    Danson, D.: A boundary element formulation of problems in linear isotropic elasticity with body forces. In: Brebbia, C.A. (ed.) Boundary Element Methods. Springer, Berlin (1981)Google Scholar
  16. 16.
    Gipson, G.: Boundary Element Fundamentals — Basic Concepts and Recent Developments in the Poisson Equation. Computational Mechanics Publication, Southampton (1987)Google Scholar
  17. 17.
    Golberg, M.: Recent developments in the numerical evaluation of particular solutions in the boundary element method. Appl. Math. Comput. 75(1), 91–101 (1996)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Golberg, M., Chen, C.: Discrete projection methods for integral equations. Computational Mechanics Publications, Southampton (1997)Google Scholar
  19. 19.
    Golberg, M.A., Chen, C.S., Bowman, H., Power, H.: Some comments on the use of radial basis functions in the dual reciprocity method. Comput. Mech. 22(1), 61–69 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hand, L., Finch, J.: Analytical Mechanics. Cambridge University Press (1998)Google Scholar
  21. 21.
    Henry, D., Banerjee, P.: A new boundary element formulation for two- and three-dimensional thermoelasticity using particular integrals. Int. J. Numer. Meth. Engrg. 26(9), 2061–2077 (1988)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Hsiao, S., Mammoli, A., Ingber, M.: The evaluation of domain integrals in complex multiply-connected three-dimensional geometries for boundary element methods. Comput. Mech. 32, 226–233 (2003)MATHCrossRefGoogle Scholar
  23. 23.
    Ingber, M., Mammoli, A., Brown, M.: A comparison of domain integral evaluation techniques for boundary element methods. Int. J. Numer. Meth. Engrg. 52(4), 417–432 (2001)MATHCrossRefGoogle Scholar
  24. 24.
    Ivanov, E., Andrä, H., Kudryavtsev, A.: Domain decomposition for automatic parallel generation of tetrahedral meshes. CMAM 6, 178–193 (2006)MATHGoogle Scholar
  25. 25.
    Jumarhon, B., Amini, S.: Towards a convergence analysis for the dual reciprocity method. In: Boundary Elements, XXI, Oxford. Int. Ser. Adv. Bound. Elem., vol. 6, pp. 583–592. WIT Press, Southampton (1999)Google Scholar
  26. 26.
    Light, W., Wayne, H.: On power functions and error estimates for radial basis function interpolation. J. Approx. Theory 92(2), 245–266 (1998)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Meth. Appl. Mech. Engrg. 157(12), 69–94 (1998)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Karachik, V., Antropova, N.: On the solution of the inhomogeneous polyharmonic equation and the inhomogeneous Helmholtz equation. Diff. Eqns. 46(3), 387–399 (2010)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Kurz, S., Rain, O., Rjasanow, S.: The Adaptive Cross Approximation technique for the 3D boundary element method. IEEE Trans. Magn. 38(2), 421–424 (2002)CrossRefGoogle Scholar
  30. 30.
    Nardini, D., Brebbia, C.: A new approach to free vibration analysis using boundary elements. In: Brebbia, C.A. (ed.) Boundary Element Methods in Engineering. Springer, Berlin (1982)Google Scholar
  31. 31.
    Neves, A., Brebbia, C.: The multiple reciprocity boundary element method in elasticity: A new approach for transforming domain integrals to the boundary. Int. J. Numer. Meth. Engrg. 31(4), 709–727 (1991)MATHCrossRefGoogle Scholar
  32. 32.
    Nowak, A., Brebbia, C.: The multiple reciprocity method: A new approach for transforming BEM domain integrals to the boundary. Engng. Anal. 6(3), 164–167 (1989)Google Scholar
  33. 33.
    Of, G., Steinbach, O., Urthaler, P.: Fast evaluation of volume potentials in boundary element methods. SIAM J. Sci. Comput. 32(2), 585–602 (2010)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Partridge, P., Brebbia, C.: Computer implementation of the BEM dual reciprocity method for the solution of general field equations. Comm. Appl. Numer. Meth. 6(2), 83–92 (1990)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Partridge, P., Brebbia, C.: The dual reciprocity method. In: Advanced formulations in boundary element methods. Internat. Ser. Comput. Engrg., Comput. Mech., Southampton, pp. 31–75 (1993)Google Scholar
  36. 36.
    Partridge, P., Brebbia, C., Wrobel, L.: The Dual Reciprocity Boundary Element Method. Elsevier Apllied Science, London (1992)MATHGoogle Scholar
  37. 37.
    Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations. Springer Series in Mathematical and Analytical Technology with Applications to Engineering, vol. 12. Springer, New York (2007)MATHGoogle Scholar
  38. 38.
    Schaback, R.: Improved error bounds for scattered data interpolation by radial basis functions. Math. Comput. 68(225), 201–216 (1999)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Sirtori, S., Maier, G., Novati, G., Miccoli, S.: A Galerkin symmetric boundary-element method in elasticity - Formulation and implementation. Int. J. Numer. Meth. Engrg. 35(2), 255–282 (1992)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Steinbach, O.: Numerical approximation methods for elliptic boundary value problems. Springer, New York (2008)MATHCrossRefGoogle Scholar
  41. 41.
    Tang, W.: Transforming domain into boundary integrals in BEM: a generalized approach. Lecture Notes in Engineering. Springer (1988)Google Scholar
  42. 42.
    Wendland, H.: Optimal approximation orders in L p for radial basis functions. East. J. Approx. 1, 87–102 (2000)MathSciNetGoogle Scholar
  43. 43.
    Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Heiko Andrä
    • 1
  • Richards Grzhibovskis
    • 2
  • Sergej Rjasanow
    • 2
  1. 1.Fraunhofer ITWMKaiserslauternGermany
  2. 2.Institut für Angewandte MathematikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations