Geometro-topological Approaches to the EM Problems

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 169)

Abstract

In this Chapter, several geometro-topological theories of the EM field and boundary value problems are considered. The main attention is paid to the topological approach based on the representation of fields by their skeletons or topological charts of field-force line maps. These charts are associated with the main features of components, and these skeletons and their bifurcations schemes are applicable for the qualitative analysis of the EM effects in microwave elements. Additionally, an approach is proposed allowing simplified semi-analytical or numerical solutions of 2-D and 3-D boundary value problems, which is promising for the development of fast EM models. In the end of this Chapter, the results of other authors on the topological theory of the EM field and its visualization and computing are considered. References -111. Figures -35, Pages -67.

Keywords

Equilibrium Point Maxwell Equation Differential Form Microstrip Antenna Ridge Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maxwell, J.C.: A Treatise on Electricity and Magnetism. Dover (1954)Google Scholar
  2. 2.
    Schwarz, A.S.: Quantum Field Theory and Topology. Springer (1993) (Translation from Russian 1989)Google Scholar
  3. 3.
    Afanasiev, G.N.: Topological Effects in Quantum Mechanics. Kluwer Academic Publ. (1999)Google Scholar
  4. 4.
    Nash, C., Sen, S.: Topology and Geometry for Physicists. Academic Press (1983)Google Scholar
  5. 5.
    Nakahara, M.: Geometry, Topology and Physics. IOP Publ. (2003)Google Scholar
  6. 6.
    Eshrig, H.: Topology and Geometry for Physics. Lecture Notes, IWF Dresden (2008)Google Scholar
  7. 7.
    Fraser, G. (ed.): The New Physics for the 21st Century. Cambridge University Press (2006)Google Scholar
  8. 8.
    Akchurin, I.A.: Philosophy Problems of Particle Physics. Nauka Publ., Moscow (1994) (in Russian)Google Scholar
  9. 9.
    Durach, M., Rusina, A., Stockman, M.I., Nelson, K.: Toward full spatiotemporal control on the nanoscale. Nanolett. 7(10), 3145–3149 (2007)CrossRefGoogle Scholar
  10. 10.
    Halas, N.J.: Connecting the dots: Reventing optics for nanoscale dimensions. PNAS 106(10), 3643–3644Google Scholar
  11. 11.
    Huang, F.M., Zheludev, N.I.: Super-resolution without evanescent waves. Nanolett. 9(3), 1249–1254Google Scholar
  12. 12.
    Gerke, T.D., Piestun, R.: Aperiodic volume optics. Nanoletters, Advance Online Publication, February 7 (2010)Google Scholar
  13. 13.
    Andronov, A.A., Leontovich, E.A., Gordon, I.I., et al.: Qualitative Theory of Second Order Dynamical Systems. Halsted Press (1973)Google Scholar
  14. 14.
    Bautin, N.N., Leontovitch, E.A.: Methods and Techniques of Qualitative Study of Dynamical Systems on Plane. Nauka Publ. (1991) (in Russian)Google Scholar
  15. 15.
    Arrowsmith, D.K., Place, C.M.: Differential Equations, Maps and Chaotic Behaviour. Chapman and Hall (1992)Google Scholar
  16. 16.
    Cole, R.W., Miller, E.K., Chakrabarti, S., et al.: Learning about fields and waves using visual electromagnetics. IEEE Trans., Educ. 33, 81–94 (1990)CrossRefGoogle Scholar
  17. 17.
    Gvozdev, V.I., Kouzaev, G.A.: A field approach to design of SHF 3D-ICs- a review. Zarubezhnaya Radioelektronika (Foreign Radio Electronics) (7), 29–35 (1990) (in Russian)Google Scholar
  18. 18.
    Miller, E.K., Deadrick, F.A.: Visualizing near-field energy flow and radiation. IEEE Antennas Propag. Mag. 42, 46–54 (2000)CrossRefGoogle Scholar
  19. 19.
    Miller, E.K.: Electromagnetics without equations. IEEE Potentials, 17–20 (April/ (May 2001)Google Scholar
  20. 20.
    Gvozdev, V.I., Kouzaev, G.A.: Field approach for CAD of microwave 3-D ICs. In: Proc. Conf. Microwave Three-Dimensional Integrated Circuits, Tbilisy, USSR, pp. 67–73 (1988) (in Russian)Google Scholar
  21. 21.
    Kouzaev, G.A.: Mathematical fundamentals of topological electrodynamics and the three-dimensional microwave integrated circuits’ simulation. In: Electrodynamics and Techniques of Microwaves and EHF, MIEM, pp. 37–44 (1991) (in Russian)Google Scholar
  22. 22.
    Gvozdev, V.I., Kouzaev, G.A.: Physics and field topology of 3-D microwave circuits. Soviet Microelectronics 21, 1–17 (1992)Google Scholar
  23. 23.
    Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid data sets. IEEE Comp. 22, 27–36 (1989)CrossRefGoogle Scholar
  24. 24.
    Lee, W., Kuipers, B.J.: A qualitative method to construct phase portraits. In: Proc. 11th National Conf. Artificial Intelligence, AAAI 1993 (1993)Google Scholar
  25. 25.
    Nishida, T.: Grammatical description of behaviours of ordinary differential equations in two-dimensional phase space. Artificial Intelligence 91, 3–32 (1997)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Weinkauf, T., Theisel, H., Hege, H.-C., et al.: Topological construction and visualization of higher-order 3D vector fields. In: Proc. Eurographics Symp., pp. 469–478 (2004)Google Scholar
  27. 27.
    Ranada, A.F.: A topological theory of the electromagnetic field. Lett. Math. Phys. 18, 97–106 (1989)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Kähler, E.: Bemerkungen über die Maxwellschen gleichungen. Abh. Math. Seminar Univ. Hamburg 12(1), 1–28 (1938)CrossRefGoogle Scholar
  29. 29.
    Deshamps, G.A.: Electromagnetics and differential forms. IEEE Proc. 69, 676–696 (1981)CrossRefGoogle Scholar
  30. 30.
    Baldomir, B., Hammond, P.: Geometry of Electromagnetic Systems. Oxford Sci. Publ. (1995)Google Scholar
  31. 31.
    Lindell, I.V.: Differential Forms in Electromagnetics. IEEE Press/Wiley Interscience (2004)Google Scholar
  32. 32.
    Gross, P.W., Kotigua, P.R.: Electromagnetic Theory and Computations: A Topological Approach. Cambridge University Press (2004)Google Scholar
  33. 33.
    Hehl, F.W., Hehl, F.W., Obukhov, Y.N.: Foundation of Classical Electrodynamics. Birchhauser Publ. (2003)Google Scholar
  34. 34.
    Barrett, T.W.: Topological Foundation of Electromagnetism. World Scientific (2008)Google Scholar
  35. 35.
    Gvozdev, V.I., Nefedov, E.I.: Three-Dimensional Microwave Integrated Circuits. Nauka Publ., Moscow (1985) (in Russian)Google Scholar
  36. 36.
    Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I., et al.: Physical principles of the modeling of three-dimensional microwave and extremely high-frequency integrated circuits. Soviet Physics-Uspekhi 35, 212–230 (1992)CrossRefGoogle Scholar
  37. 37.
    Kouzaev, G.A.: Basics of topological electromagnetics and its applications, Plenary lecture. In: Proc. 8th Int. Conf. Applications of El. Eng., Houston, USA, April 30-May 2, pp. 195–198 (2009)Google Scholar
  38. 38.
    Gvozdev, V.I., Kouzaev, G.A.: Topological schemes of the electromagnetic field and design applications. In: Proc. Conf. Theory and Math. Modeling of Microwave 3D ICs, Alma-Ata, USSR, pp. 29–41 (1989) (in Russian)Google Scholar
  39. 39.
    Kouzaev, G.A.: Symmetry of electromagnetic fields in microwave three-dimensional integrated circuits. In: Proc. Conf. Math. Modeling and CAD of Microwave Three-Dimensional Integrated Circuits, Tula, USSR, pp. 60–79 (1990) (in Russian)Google Scholar
  40. 40.
    Gvozdev, V.I., Kouzaev, G.A.: CAD for three-dimensional integrated circuits based on the topological approach. In: Bunkin, B.V., Gridin, V.N. (eds.) Intelligent Integrated CAD Systems for Radio-Electronic Devices and LSI, pp. 105–111. Nauka Publ., Moscow (1990) (in Russian)Google Scholar
  41. 41.
    Kouzaev, G.A.: Topological approach for eigenmodal problems. In: Proc. Conf. Mathematical Simulation and CAD of Microwave and Millimeter-Wave Integrated Circuits, Volgograd, USSR, pp. 25–26 (1991) (in Russian)Google Scholar
  42. 42.
    Gvozdev, V.I., Kouzaev, G.A.: Topology and physics of electromagnetic fields in three-dimensional components of microwave integrated circuits. In: Proc. Conf. Math. Simulation and CAD of Microwave and Millimeter-Wave Integrated Circuits, Volgograd, USSR, pp. 27–29 (1991) (in Russian)Google Scholar
  43. 43.
    Kouzaev, G.A., Utkin, M.I.: Topological analysis of the dominant mode field of an antipodal slot transmission line. In: Proc. Conf. Progress in Analog and Digital Integrated Circuits Based on Three-Dimensional Components, Tula, USSR, pp. 113–114 (1991) (in Russian)Google Scholar
  44. 44.
    Kouzaev, G.A.: Convergence of solutions in topological electrodynamics. In: Proc. Conf. Techniques, Theory, Math. Modeling and CAD for Ultra-High-Speed Three-Dimensional Microwave Integrated Circuits, Moscow, vol. 2, pp. 238–241 (1992) (in Russian)Google Scholar
  45. 45.
    Gvozdev, V.I., Kouzaev, G.A.: The similarity principle for simulation of three-dimensional microwave integrated circuits. In: Proc. Conf. Techniques, Theory, Mathematical Modeling, and CAD for Ultra-High-Speed Three-Dimensional Microwave Integrated Circuits, Moscow, vol. 1, pp. 127–134 (1992) (in Russian)Google Scholar
  46. 46.
    Gvozdev, V.I., Kouzaev, G.A., Tikhonov, A.N.: New transmission lines and electro-dynamical models for three-dimensional microwave integrated circuits. Sov. Physics-Doklady 35, 675–677 (1990)Google Scholar
  47. 47.
    Gvozdev, V.I., Kouzaev, G.A., et al.: Topological models of the natural modes in coupled corner transmission lines. J. Commun. Techn. Electron (Radiotekhnika i Elektronika) 37, 48–54 (1992)Google Scholar
  48. 48.
    Gvozdev, V.I., Kouzaev, G.A., et al.: Directional couplers based on transmission lines with corners. J. Commun. Techn. Electron (Radiotekhnika i Elektronika) 37, 37–40 (1992)Google Scholar
  49. 49.
    Gvozdev, V.I., Kouzaev, G.A., et al.: Element base and functional components of three-dimensional integrated circuits of the microwave range. In: Modeling and Design of Devices and Systems of Micro- and Nanoelectronics, pp. 5–10. MIET Publ., Moscow (1994) (in Russian)Google Scholar
  50. 50.
    Kouzaev, G.A., Deen, M.J., Nikolova, N.K., Rahal, A.: Cavity models of planar components grounded by via-holes and their experimental verification. IEEE Trans., Microwave Theory Tech. 54, 1033–1042 (2006)CrossRefGoogle Scholar
  51. 51.
    Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer (1988)Google Scholar
  52. 52.
    Nikolskii, V.V.: Variational Methods for Inner Boundary Value Problems of Electrodynamics. Nauka Publ., Moscow (1967) (in Russian)Google Scholar
  53. 53.
    Nikolskyi, V.V., Nikolskaya, T.I.: Electrodynamics and Wave Propagation. Nauka, Moscow (1987) (in Russian)Google Scholar
  54. 54.
    Omar, A.S., Jensen, E., Lutgert, S.: On the modal expansion of resonator field in the source region. IEEE Trans., Microw. Theory Tech. 40, 1730–1732 (1992)CrossRefGoogle Scholar
  55. 55.
    Jerry, A.J.: The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations. Kluver Academic Publ. (1998)Google Scholar
  56. 56.
    Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer (2002)Google Scholar
  57. 57.
    Bocharov, A.V., Verbovezyi, A.M., Vongradov, A.M., et al.: Symmetry and the Conservation Laws of the Equations of Mathematical Physics. Factorial-Press (2005) (in Russian) Google Scholar
  58. 58.
    Mansfield, E.L.: Noether theorem for smooth, difference and finite element systems. In: Foundations of Computational Mathematics, Santander 2005, pp. 230–254. Cambridge University Press (2006)Google Scholar
  59. 59.
    Utsumi, Y.: Variational analysis of ridged waveguide modes. IEEE Trans., Microw. Theory Tech. 33, 111–120 (1985)CrossRefGoogle Scholar
  60. 60.
    Meixner, J.: The behavior of electromagnetic fields at edges. IEEE Trans., Antennas Propag. 20, 442–446 (1972)CrossRefGoogle Scholar
  61. 61.
    Leroy, M.: On the convergence of numerical results in modal analysis. IEEE Trans., Antennas Propag. 31, 655–659 (1983)CrossRefGoogle Scholar
  62. 62.
    Mittra, R. (ed.): Computer Techniques for Electromagnetics. Pergamon Press (1973)Google Scholar
  63. 63.
    Yang, R., Omar, A.S.: Investigation of multiple rectangular aperture irises in rectan-gular waveguide using TEx mn -modes. IEEE Trans., Microw. Theory Tech. 41, 1369–1374 (1993)CrossRefGoogle Scholar
  64. 64.
    Gessel, G.A., Ciric, I.R.: Multiple waveguide discontinuity modeling with restricted mode interaction. IEEE Trans., Microw. Theory Tech. 42, 351–353 (1994)CrossRefGoogle Scholar
  65. 65.
    Lavrentiev, M.M.: Ill-posed Problems of Mathematical Physics and Analysis. Am. Math. Soc. (1986)Google Scholar
  66. 66.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill Posed Problems. V.H. Winston and Sons (1977)Google Scholar
  67. 67.
    Leonov, A.S.: On quasi-optimal choice of the regularization parameter in the Lavrentiev’s method. Siberian Math. J. 34(4), 117–126 (1993) (in Russian)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Gvozdev, V.I., Kouzaev, G.A., Linev, A.A., et al.: Sensor for measurements of the permittivity of a medium in closed systems. Measurement Techniques 39, 81–83 (1996)CrossRefGoogle Scholar
  69. 69.
    Gvozdev, V.I., Kouzaev, G.A., Linev, A.A., et al.: Sensor for measurement of physical parameters. RF Patent, No 2057325 dated on, February 26 (1993)Google Scholar
  70. 70.
    Conciauro, G., Guglielmi, M., Sorrentino, R.: Advanced Modal Analysis. J. Willey, New York (1999)Google Scholar
  71. 71.
    Wang, C.Y.: Frequencies of a truncated circular waveguide - method of internal matching. IEEE Trans., Microw. Theory Tech. 48, 1763–1765 (2000)CrossRefGoogle Scholar
  72. 72.
    Okoshi, T.: Planar Circuits for Microwaves and Light Waves. Springer, Berlin (1985)CrossRefGoogle Scholar
  73. 73.
    Kouzaev, G.A., Nikolova, N.K., Deen, M.J.: Circular-pad via model based on cavity field analysis. IEEE Microw. Wireless Lett. 13, 481–483 (2003)CrossRefGoogle Scholar
  74. 74.
    Larsen, T.: On the relation between modes in rectangular, elliptical and parabolic waveguides and a mode classification systems. IEEE Trans., Microw. Theory Tech. 20, 379–384 (1972)CrossRefGoogle Scholar
  75. 75.
    Waterhouse, R.B., Targonski, S.D.: Performance of microstrip patches incorporating a single shorting post. In: Antennas Propag. Soc. Int. Symp., AP-S Dig., July 21-26, vol. 1, pp. 29–32 (1996)Google Scholar
  76. 76.
    Yan, Z.: A microstrip patch resonator with a via connecting ground. Microw. Opt. Tech. Lett. 32, 9–11 (2002)CrossRefGoogle Scholar
  77. 77.
    Vaughan, R.G.: Two-port higher mode circular microstrip antennas. IEEE Trans. Antennas Propag. 36, 309–321 (1988)CrossRefGoogle Scholar
  78. 78.
    Clavijo, S., Dias, R.E., McKinzie, W.E.: Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas. IEEE Trans. Antennas Propag. 51, 2678–2690 (2003)CrossRefGoogle Scholar
  79. 79.
    Lin, S.-C., Wang, C.-H., Chen, C.H.: “Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros. IEEE Trans., Microw. Theory Tech. 55, 137–146 (2007)CrossRefGoogle Scholar
  80. 80.
    Razalli, M.S., Ismail, A., Mahd, M.A., et al.: Compact configuration ultra-wideband microwave filter using quarter-wave lengthy short-circuited stub. In: Proc. Asia-Pacific Microw. Conf. (2007)Google Scholar
  81. 81.
    Mahajan, M., Khah, S.K., Chakarvarty, T., et al.: Computation of resonant frequency of annular microstrip antenna loaded with multiple shorting posts. IET Microw. Antennas Propag. 2, 1–5 (2008)CrossRefGoogle Scholar
  82. 82.
    Kamgaing, T., Ramahi, O.M.: Multiband electromagnetic-bandgap structures for applications in small form-factor multichip module packages. IEEE Trans., Microw. Theory Tech. 56, 2293–2300 (2008)CrossRefGoogle Scholar
  83. 83.
    Roumeliotis, J.A., Savaidis, S.P.: Cuttoff frequencies of eccentric circular-elliptic waveguides. IEEE Trans., Microw. Theory Tech. 42, 2128–2138 (1994)CrossRefGoogle Scholar
  84. 84.
    Kouzaev, G.A.: Communications by vector manifolds. In: Mastorakis, M., Mladenov, V., Kontargry, V.T. (eds.) Proc. Eur. Computing Conf. LNEE, vol. 1, 27, ch. 6, pp. 617–624. Springer (2009) (invited paper)Google Scholar
  85. 85.
    Globus, A., Levit, C., Lasinski, T.: A tool for visualizing the topology of three-dimensional vector fields. In: Proc. IEEE Visualization 1991, pp. 33–40 (1991)Google Scholar
  86. 86.
    Weinkauf, T., Theisel, H., Hege, H.-C., et al.: Topological constructions and visualization of higher order 3D vector fields. Computer Graphics Forum 23(3), 469–478 (2004)CrossRefGoogle Scholar
  87. 87.
    Theisel, H., Rössl, C., Weinkauf, T.: Topological representation of vector fields. In: De Floriani, L., Spagnuolo, M. (eds.) Shape Analysis and Structuring, pp. 215–240. Springer (2008)Google Scholar
  88. 88.
    Theisel, H., Weinkauf, T., Hege, H.-C., et al.: On the applicability of topological methods for complex flow data. In: Topology Based Methods in Visualization, pp. 105–120. Springer (2007)Google Scholar
  89. 89.
    Aigner, W., Miksch, S., Müller, W., et al.: Visual methods for analyzing time-oriented data. IEEE Trans., Vis. Comp. Graphics 14, 47–60 (2008)CrossRefGoogle Scholar
  90. 90.
    Marchesin, S., Chen, C.-K., Ho, C., et al.: View-dependent streamlines for 3D vector fields. IEEE Trans., Visualization and Comp. Graph. 16, 1578–1586 (2010)CrossRefGoogle Scholar
  91. 91.
    Theisel, H., Seidel, H.-P.: Feature flow fields. In: Proc. Joint EUROGRAPHICS-IEEE TCVG Symp. Visualization, pp. 141–148 (2003)Google Scholar
  92. 92.
    Tricoche, X., Scheuermann, G., Hagen, H.: Topology-based visualization of time-dependent 2D vector fields. In: Proc. Vis. Symp., Data Visualization 2001, pp. 117–126 (2001)Google Scholar
  93. 93.
    Peng, Z., Laramee, R.S.: Higher dimensional field visualization: a survey. In: EG UK Theory and Practice of Computer Graphics, The European Eurographics Association (2009)Google Scholar
  94. 94.
    Theisel, H., Wenkauf, T., Hege, H.C., et al.: Stream line and path line oriented topology for 2D time-dependent vector fields. In: Proc. IEEE Visualization 2004, Austin, USA, pp. 321–328 (October 2004)Google Scholar
  95. 95.
    Smiths, A.J., Lin, T.T. (eds.): Flow Visualization: Techniques and Examples. World Scientific (2011)Google Scholar
  96. 96.
    Sohn, B.-S., Bajaj, C.: Time-varying contour topology. IEEE Trans., Visualization and Comp. Graph. 12, 14–25 (2006)CrossRefGoogle Scholar
  97. 97.
    Wegenkittl, R., Loeffelmann, H., Groeller, E.: Visualizing the behavior of higher di-mensional systems. In: Proc. IEEE Conf. Visualization 1997, pp. 119–125 (1997)Google Scholar
  98. 98.
    Datta-Gupta, A., King, M.J.: Streamline Simulation: Theory and Practice, Society of Petroleum Engineers (2007)Google Scholar
  99. 99.
    Engl, W.L.: Topology and geometry of the electromagnetic field. Radio Science 19, 1131–1138 (1984)CrossRefGoogle Scholar
  100. 100.
    Warnick, K.F., Selfridge, R.H., Arnold, D.V.: Teaching electromagnetic field theory using differential forms. IEEE Trans., Microw. Theory Tech. 40, 53–68 (1997)Google Scholar
  101. 101.
    Kiehn, R.M.: Topological evolution of classical electromagnetic field and the photon. In: Dvoeglazov, V. (ed.) Photon and Poincaré Group, pp. 246–262. Nova Sci. Publ. Inc. (1999)Google Scholar
  102. 102.
    Delphenich, D.H.: On the axioms of topological electromagnetism. Annalen der Physik 14, 347–377 (2005)MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    Baleanu, D., Golmankhaneh, A.K., Baleanu, M.C.: Fractional electromagnetic equations using fractional forms. Int. J. Theor. Phys. 48, 3114–3123 (2009)MathSciNetMATHCrossRefGoogle Scholar
  104. 104.
    Nicolet, A., Remacle, J.-F., Meis, B., et al.: Transformation methods in computational electromagnetism. J. Appl. Phys. 75(10), 6036–6038 (1994)CrossRefGoogle Scholar
  105. 105.
    Texeira, F.L., Chew, W.C.: Lattice theory from topological viewpoint. J. Math. Phys. 40, 169–187 (1999)MathSciNetCrossRefGoogle Scholar
  106. 106.
    Castilo, P., Rieben, R., White, D.: FEMSTER: An object oriented class library of discrete differential forms. Lawrence Livermore National Laboratory Report. UCRL-JC-150238-ABC, The InternetGoogle Scholar
  107. 107.
    Donderici, B., Texeira, F.L.: Metamaterial blueprints for reflectionless waveguide bends. IEEE Microw. Wireless Comp. Lett. 18, 233–235 (2008)CrossRefGoogle Scholar
  108. 108.
    Ranada, A.F.: Topological electromagnetism with hidden nonlinearity. In: Evans, M.W. (ed.) Modern Nonlinear Optics, Part 3. Advances in Chem. Physics, 2nd edn., vol. 119, pp. 197–252. J. Wiley & Sons, Inc. (2001)Google Scholar
  109. 109.
    Donoso, J.M., Ranada, A.F., Trueba, J.L.: On electromagnetic models of ball lightning with topological structure (2003), arXiv:physics/0312122v1Google Scholar
  110. 110.
    Irvine, W.T.M., Bouweester, D.: Linked and knotted beams of light. Nature Physics 4, 716–720 (2008)CrossRefGoogle Scholar
  111. 111.
    Arrayas, M., Trueba, J.L.: Motion of charged particles in an electromagnetic knot (January 27, 2010), arXiv:1001.4985v1 (math-ph)Google Scholar
  112. 112.
    Tamburini, F., Mari, E., Sponselli, A., et al.: Encoding many channels on the same frequency through radio vorcity: first experimental test. New J. Phys. 14, 1–17 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunications Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations