Stable Community Cores in Complex Networks

  • Massoud Seifi
  • Ivan Junier
  • Jean-Baptiste Rouquier
  • Svilen Iskrov
  • Jean-Loup Guillaume
Part of the Studies in Computational Intelligence book series (SCI, volume 424)


Complex networks are generally composed of dense sub-networks called communities. Many algorithms have been proposed to automatically detect such communities. However, they are often unstable and behave nondeterministically. We propose here to use this non-determinism in order to compute groups of nodes on which community detection algorithms agree most of the time.We show that these groups of nodes, called community cores, are more similar to Ground Truth than communities in real and artificial networks. Furthermore, we show that in contrary to the classical approaches, we can reveal the absence of community structure in random graphs.


Complex Network Random Graph Random Network Community Detection Community Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aynaud, T., Guillaume, J.: Static community detection algorithms for evolving networks. In: Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 513–519. IEEE (2010)Google Scholar
  2. 2.
    Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008, P10,008 (2008)Google Scholar
  3. 3.
    Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On Finding Graph Clusterings with Maximum Modularity. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 121–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Erdös, P., Rényi, A.: On random graphs. i. Publicationes Mathematicae (Debrecen) 6, 290–297 (1959)zbMATHGoogle Scholar
  5. 5.
    Gfeller, D., Chappelier, J., De Los Rios, P.: Finding instabilities in the community structure of complex networks. Physical Review E 72(5), 056, 135 (2005)CrossRefGoogle Scholar
  6. 6.
    Girvan, M., Newman, M.: Community structure in social and biological networks. In: Proceedings of the National Academy of Sciences, vol. 99(12), p. 7821 (2002)Google Scholar
  7. 7.
    Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Physical Review E 68(6), 065, 103 (2003)CrossRefGoogle Scholar
  8. 8.
    Guimera, R., Sales-Pardo, M., Amaral, L.: Modularity from fluctuations in random graphs and complex networks. Physical Review E 70(2), 025, 101 (2004)CrossRefGoogle Scholar
  9. 9.
    Karrer, B., Levina, E., Newman, M.: Robustness of community structure in networks. Physical Review E 77(4), 046, 119 (2008)CrossRefGoogle Scholar
  10. 10.
    Lambiotte, R.: Multi-scale modularity in complex networks. In: 2010 Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt). IEEE (2010)Google Scholar
  11. 11.
    Lancichinetti, A.: Community detection algorithms: a comparative analysis. Physical Review E 80(5), 056, 117 (2009)CrossRefGoogle Scholar
  12. 12.
    Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Structures & Algorithms 6(2-3), 161–180 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Newman, M.: The structure of scientific collaboration networks. In: Proceedings of the National Academy of Sciences, vol. 98(2), p. 404 (2001)Google Scholar
  14. 14.
    Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Physical review E 69(2), 026, 113 (2004)CrossRefGoogle Scholar
  15. 15.
    Pfitzner, D., Leibbrandt, R., Powers, D.: Characterization and evaluation of similarity measures for pairs of clusterings. Knowledge and Information Systems 19(3), 361–394 (2009)CrossRefGoogle Scholar
  16. 16.
    Qinna, W., Fleury, E.: Detecting overlapping communities in graphs. In: European Conference on Complex Systems (ECCS 2009), Warwick Royaume-Uni. (2009),
  17. 17.
    Rosvall, M., Bergstrom, C.: Mapping change in large networks. PloS one 5(1), e8694 (2010)CrossRefGoogle Scholar
  18. 18.
    Salwinski, L., Miller, C., Smith, A., Pettit, F., Bowie, J., Eisenberg, D.: The database of interacting proteins: 2004 update. Nucleic Acids Research 32(suppl. 1), D449–D451 (2004)CrossRefGoogle Scholar
  19. 19.
    Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research 3, 583–617 (2003)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Vinh, N., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1073–1080. ACM (2009)Google Scholar
  21. 21.
    Zachary, W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 452–473 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Massoud Seifi
    • 1
  • Ivan Junier
    • 2
    • 3
  • Jean-Baptiste Rouquier
    • 2
    • 3
  • Svilen Iskrov
    • 2
    • 3
  • Jean-Loup Guillaume
    • 1
  1. 1.Laboratory of Computer Sciences, Paris VI (LIP6)Pierre and Marie Curie UniversityParisFrance
  2. 2.Centre for Genomic Regulation (CRG)BarcelonaSpain
  3. 3.Institute of Complex Systems, Paris le-de-FranceParisFrance

Personalised recommendations