Evaluating Scientific Hypotheses Using the SPARQL Inferencing Notation

  • Alison Callahan
  • Michel Dumontier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7295)


Evaluating a hypothesis and its claims against experimental data is an essential scientific activity. However, this task is increasingly challenging given the ever growing volume of publications and data sets. Towards addressing this challenge, we previously developed HyQue, a system for hypothesis formulation and evaluation. HyQue uses domain-specific rulesets to evaluate hypotheses based on well understood scientific principles. However, because scientists may apply differing scientific premises when exploring a hypothesis, flexibility is required in both crafting and executing rulesets to evaluate hypotheses. Here, we report on an extension of HyQue that incorporates rules specified using the SPARQL Inferencing Notation (SPIN). Hypotheses, background knowledge, queries, results and now rulesets are represented and executed using Semantic Web technologies, enabling users to explicitly trace a hypothesis to its evaluation as Linked Data, including the data and rules used by HyQue. We demonstrate the use of HyQue to evaluate hypotheses concerning the yeast galactosegene system.


hypothesis evaluation semantic web linked data SPARQL 


  1. 1.
    Neylon, C., Wu, S.: Article-Level Metrics and the Evolution of Scientific Impact. PloS Biology 7(11), e1000242 (2009)Google Scholar
  2. 2.
    Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide, W., Hill, D.P., Kania, R., Schaeffer, M., St Pierre, S., et al.: Big data: The future of biocuration. Nature 455(7209), 47–50 (2008)CrossRefGoogle Scholar
  3. 3.
    Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. Journal of Biomedical Informatics 41(5), 706–716 (2008)CrossRefGoogle Scholar
  4. 4.
    Tari, L., Anwar, S., Liang, S., Cai, J., Baral, C.: Discovering drug-drug interactions: a text-mining and reasoning approach based on properties of drug metabolism. Bioinformatics 26 (18), i547–i553Google Scholar
  5. 5.
    Nolin, M.A., Dumontier, M., Belleau, F., Corbeil, J.: Building an HIV data mashup using Bio2RDF. Briefings in Bioinformatics (2011)Google Scholar
  6. 6.
    Blonde, W., Mironov, V., Venkatesan, A., Antezana, E., De Baets, B., Kuiper, M.: Reasoning with bio-ontologies: using relational closure rules to enable practical querying. Bioinformatics 27(11), 1562–1568 (2011)CrossRefGoogle Scholar
  7. 7.
    Villanueva-Rosales, N., Dumontier, M.: yOWL: an ontology-driven knowledge base for yeast biologists. Journal of Biomedical Informatics 41(5), 11 (2008)CrossRefGoogle Scholar
  8. 8.
    Karp, P.D.: Artificial intelligence methods for theory representation and hypothesis formation. Comput. Appl. Biosci. 7(3), 301–308 (1991)MathSciNetGoogle Scholar
  9. 9.
    Karp, P.: Design Methods for Scientific Hypothesis Formation and Their Application to Molecular Biology. Machine Learning 12(1-3), 89–116 (1993)CrossRefGoogle Scholar
  10. 10.
    Karp, P.D., Ouzounis, C., Paley, S.: HinCyc: a knowledge base of the complete genome and metabolic pathways of H. influenzae. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 4, pp. 116–124 (1996)Google Scholar
  11. 11.
    Zupan, B., Bratko, I., Demsar, J., Juvan, P., Curk, T., Borstnik, U., Beck, J.R., Halter, J., Kuspa, A., Shaulsky, G.: GenePath: a system for inference of genetic networks and proposal of genetic experiments. Artif. Intell. Med. 29(1-2), 107–130 (2003)CrossRefGoogle Scholar
  12. 12.
    King, R.D., Rowland, J., Oliver, S.G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P., Soldatova, L., et al.: The automation of science. Science 324(5923), 85–89 (2009)CrossRefGoogle Scholar
  13. 13.
    Soldatova, L., King, R.D.: Representation of research hypotheses. In: Bio-Ontologies 2010: Semantic Applications in Life Sciences, Boston, MA (2010)Google Scholar
  14. 14.
    Callahan, A., Dumontier, M., Shah, N.: HyQue: Evaluating hypotheses using Semantic Web technologies. In: Bio-Ontologies: Semantic Applications in the Life Sciences, Boston, MA (2010)Google Scholar
  15. 15.
    Callahan, A., Dumontier, M., Shah, N.H.: HyQue: evaluating hypotheses using Semantic Web technologies. J. Biomed. Semantics 2(suppl. 2), S3 (2011)CrossRefGoogle Scholar
  16. 16.
    Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng, J.K., Bumgarner, R., Goodlett, D.R., Aebersold, R., Hood, L.: Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292(5518), 929–934 (2001)CrossRefGoogle Scholar
  17. 17.
    Racunas, S.A., Shah, N.H., Albert, I., Fedoroff, N.V.: HyBrow: a prototype system for computer-aided hypothesis evaluation. Bioinformatics 20(suppl. 1), i257–i264 (2004)CrossRefGoogle Scholar
  18. 18.
    Bhat, P.J., Murthy, T.V.: Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduction. Mol. Microbiol. 40(5), 1059–1066 (2001)CrossRefGoogle Scholar
  19. 19.
    Peng, G., Hopper, J.E.: Evidence for Gal3p’s cytoplasmic location and Gal80p’s dual cytoplasmic-nuclear location implicates new mechanisms for controlling Gal4p activity in Saccharomyces cerevisiae. Mol. Cell Biol. 20(14), 5140–5148 (2000)CrossRefGoogle Scholar
  20. 20.
    Kobayashi, N., Ishii, M., Takahashi, S., Mochizuki, Y., Matsushima, A., Toyoda, T.: Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases. Nucleic Acids Res. 39(Web Server issue), W533–W540 (2011)CrossRefGoogle Scholar
  21. 21.
    Chen, B., Dong, X., Jiao, D., Wang, H., Zhu, Q., Ding, Y., Wild, D.J.: Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data. BMC Bioinformatics 11, 255 (2010)CrossRefGoogle Scholar
  22. 22.
    Antezana, E., Kuiper, M., Mironov, V.: Biological knowledge management: the emerging role of the Semantic Web technologies. Brief Bioinform. 10(4), 392–407 (2009)CrossRefGoogle Scholar
  23. 23.
    Polikoff, I.: Comparing SPIN with RIF (July 05, 2011), (accessed December 7, 2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alison Callahan
    • 1
  • Michel Dumontier
    • 1
    • 2
    • 3
  1. 1.Department of BiologyCarleton UniversityOttawaCanada
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Institute of BiochemistryCarleton UniversityOttawaCanada

Personalised recommendations