Representing Mereotopological Relations in OWL Ontologies with OntoPartS

  • C. Maria Keet
  • Francis C. Fernández-Reyes
  • Annette Morales-González
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7295)

Abstract

Representing and reasoning over mereotopological relations (parthood and location) in an ontology is a well-known challenge, because there are many relations to choose from and OWL has limited expressiveness in this regard. To address these issues, we structure mereotopological relations based on the KGEMT mereotopological theory. A correctly chosen relation counterbalances some weaknesses in OWL’s representation and reasoning services. To achieve effortless selection of the appropriate relation, we hide the complexities of the underlying theory through automation of modelling guidelines in the new tool OntoPartS. It uses, mainly, the categories from DOLCE [12], which avoids lengthy question sessions, and it includes examples and verbalizations. OntoPartS was experimentally evaluated, which demonstrated that selecting and representing the desired relation was done efficiently and more accurately with OntoPartS.

Keywords

Description Logic Domain Ontology Proper Part Subject Domain Ontology Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Artale, A., Franconi, E., Guarino, N., Pazzi, L.: Part-whole relations in object-centered systems: An overview. DKE 20(3), 347–383 (1996)MATHCrossRefGoogle Scholar
  2. 2.
    Bittner, T., Donnelly, M.: Computational ontologies of parthood, componenthood, and containment. In: Proc. of IJCAI 2005, pp. 382–387. AAAI Press, Cambridge (2005)Google Scholar
  3. 3.
    Cohn, A.G., Renz, J.: Qualitative spatial representation and reasoning. In: Handbook of Knowledge Representation, ch. 13 p. 551–596. Elsevier (2008)Google Scholar
  4. 4.
    Egenhofer, M.J., Herring, J.R.: Categorizing binary topological relations between regions, lines, and points in geographic databases. Tech. Rep. 90-12, National Center for Geographic Information and Analysis, University of California (1990)Google Scholar
  5. 5.
    Eschenbach, C., Heydrich, W.: Classical mereology and restricted domains. International Journal of Human-Computer Studies 43, 723–740 (1995)CrossRefGoogle Scholar
  6. 6.
    Grütter, R., Bauer-Messmer, B.: Combining OWL with RCC for spatioterminological reasoning on environmental data. In: Proc. of OWLED 2007 (2007)Google Scholar
  7. 7.
    Guarino, N., Welty, C.: An overview of OntoClean. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 151–159. Springer (2004)Google Scholar
  8. 8.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\cal{SROIQ}\). In: Proc. of KR 2006, pp. 452–457 (2006)Google Scholar
  9. 9.
    Katz, Y., Cuenca Grau, B.: Representing qualitative spatial information in OWL-DL. In: Proc. of OWLED 2005, Galway, Ireland (2005)Google Scholar
  10. 10.
    Keet, C.M.: Part-Whole Relations in Object-Role Models. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1116–1127. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Keet, C.M., Artale, A.: Representing and reasoning over a taxonomy of part-whole relations. Applied Ontology 3(1-2), 91–110 (2008)Google Scholar
  12. 12.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology library. WonderWeb Deliverable D18 (ver. 1.0) (December 31, 2003), http://wonderweb.semanticweb.org
  13. 13.
    McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview. W3C Recommendation (2004), http://www.w3.org/TR/owl-features/
  14. 14.
    Mejino, J.L.V., Agoncillo, A.V., Rickard, K.L., Rosse, C.: Representing complexity in part-whole relationships within the foundational model of anatomy. In: Proc. of the AMIA Fall Symposium, pp. 450–454 (2003)Google Scholar
  15. 15.
    Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language Profiles. W3c recommendation, W3C (October 27, 2009), http://www.w3.org/TR/owl2-profiles/
  16. 16.
    Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 web ontology language structural specification and functional-style syntax. W3c recommendation, W3C (October 27, 2009) http://www.w3.org/TR/owl2-syntax/
  17. 17.
    Nutt, W.: On the Translation of Qualitative Spatial Reasoning Problems into Modal Logics. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI 1999. LNCS (LNAI), vol. 1701, pp. 113–124. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Odell, J.J.: Advanced Object-Oriented Analysis & Design using UML. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  19. 19.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proc. of KR 1992, pp. 165–176. Morgan Kaufmann (1992)Google Scholar
  20. 20.
    Schulz, S., Hahn, U., Romacker, M.: Modeling anatomical spatial relations with description logics. In: AMIA 2000 Annual Symposium, pp. 779–783 (2000)Google Scholar
  21. 21.
    Stocker, M., Sirin, E.: Pelletspatial: A hybrid RCC-8 and RDF/OWL reasoning and query engine. In: Proc. of OWLED 2009, Chantilly, USA, October 23-24. CEUR-WS, vol. 529 (2009)Google Scholar
  22. 22.
    Varzi, A.: Spatial reasoning and ontology: parts, wholes, and locations. In: Handbook of Spatial Logics, pp. 945–1038. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Wessel, M.: Obstacles on the way to qualitative spatial reasoning with description logics: some undecidability results. In: Proc. of DL 2001, Stanford, CA, USA, August 1-3. CEUR WS, vol. 49 (2001)Google Scholar
  24. 24.
    Winston, M.E., Chaffin, R., Herrmann, D.: A taxonomy of partwhole relations. Cognitive Science 11(4), 417–444 (1987)CrossRefGoogle Scholar
  25. 25.
    Yang, W., Luo, Y., Guo, P., Tao, H., He, B.: A Model for Classification of Topological Relationships Between Two Spatial Objects. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), Part II, vol. 3614, pp. 723–726. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Zhong, Z.-N., et al.: Representing topological relationships among heterogeneous geometry-collection features. J. of Comp. Sci. & Techn. 19(3), 280–289 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • C. Maria Keet
    • 1
  • Francis C. Fernández-Reyes
    • 2
  • Annette Morales-González
    • 3
  1. 1.School of Computer ScienceUniversity of KwaZulu-NatalSouth Africa
  2. 2.Instituto Superior Politécnico “José Antonio Echeverría” (CUJAE)Cuba
  3. 3.Advanced Technologies Application CenterCENATAVHavana CityCuba

Personalised recommendations