Automatic Configuration Selection Using Ontology Matching Task Profiling

  • Isabel F. Cruz
  • Alessio Fabiani
  • Federico Caimi
  • Cosmin Stroe
  • Matteo Palmonari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7295)


An ontology matching system can usually be run with different configurations that optimize the system’s effectiveness, namely precision, recall, or F-measure, depending on the specific ontologies to be aligned. Changing the configuration has potentially high impact on the obtained results. We apply matching task profiling metrics to automatically optimize the system’s configuration depending on the characteristics of the ontologies to be matched. Using machine learning techniques, we can automatically determine the optimal configuration in most cases. Even using a small training set, our system determines the best configuration in 94% of the cases. Our approach is evaluated using the AgreementMaker ontology matching system, which is extensible and configurable.


  1. 1.
    Aha, D.W., Kibler, D., Albert, M.K.: Instance-based Learning Algorithms. Machine Learning 6(1), 37–66 (1991)Google Scholar
  2. 2.
    Cruz, I.F., Palandri Antonelli, F., Stroe, C.: Agreementmaker: Efficient matching for large real-world schemas and ontologies. PVLDB 2(2), 1586–1589 (2009)Google Scholar
  3. 3.
    Cruz, I.F., Palandri Antonelli, F., Stroe, C.: Integrated Ontology Matching and Evaluation. In: International Semantic Web Conference, Posters & Demos (2009)Google Scholar
  4. 4.
    Cruz, I.F., Palandri Antonelli, F., Stroe, C.: Efficient Selection of Mappings and Automatic Quality-driven Combination of Matching Methods. In: ISWC International Workshop on Ontology Matching (OM) CEUR Workshop Proceedings, vol. 551, pp. 49–60 (2009)Google Scholar
  5. 5.
    Cruz, I.F., Stroe, C., Caci, M., Caimi, F., Palmonari, M., Antonelli, F.P., Keles, U.C.: Using AgreementMaker to Align Ontologies for OAEI 2010. In: ISWC International Workshop on Ontology Matching (OM). CEUR Workshop Proceedings, vol. 689, pp. 118–125 (2010)Google Scholar
  6. 6.
    Cruz, I.F., Stroe, C., Pesquita, C., Couto, F., Cross, V.: Biomedical Ontology Matching Using the AgreementMaker System (Software Demonstration). In: International Conference on Biomedical Ontology (ICBO). CEUR Workshop Proceedings, vol. 833, pp. 290–291 (2011)Google Scholar
  7. 7.
    Duan, S., Fokoue, A., Srinivas, K.: One Size Does Not Fit All: Customizing Ontology Alignment Using User Feedback. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 177–192. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Eckert, K., Meilicke, C., Stuckenschmidt, H.: Improving Ontology Matching Using Meta-level Learning. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 158–172. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Ehrig, M., Staab, S., Sure, Y.: Bootstrapping Ontology Alignment Methods with APFEL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 186–200. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  11. 11.
    Gardner, M.W., Dorling, S.R.: Artificial Neural Networks (the Multilayer Perceptron)–a Review of Applications in the Atmospheric Sciences. Atmospheric Environment 32(14-15), 2627–2636 (1998)CrossRefGoogle Scholar
  12. 12.
    John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: Conference on Uncertainty in Artificial Intelligence (UAI), pp. 338–345 (1995)Google Scholar
  13. 13.
    Hariri, B.B., Sayyadi, H., Abolhassani, H., Esmaili, K.S.: Combining Ontology Alignment Metrics Using the Data Mining Techniques. In: ECAI International Workshop on Context and Ontologies, pp. 65–67 (2006)Google Scholar
  14. 14.
    Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology Alignment for Linked Open Data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 402–417. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Köpcke, H., Rahm, E.: Training Selection for Tuning Entity Matching. In: International Workshop on Quality in Databases and Management of Uncertain Data (QDB/MUD), pp. 3–12 (2008)Google Scholar
  16. 16.
    Lee, Y., Sayyadian, M., Doan, A., Rosenthal, A.: eTuner: Tuning Schema Matching Software Using Synthetic Scenarios. VLDB Journal 16(1), 97–122 (2007)Google Scholar
  17. 17.
    Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A Dynamic Multistrategy Ontology Alignment Framework. IEEE Transactions on Data and Knowledge Engineering 21(8), 1218–1232 (2009)CrossRefGoogle Scholar
  18. 18.
    Marie, A., Gal, A.: Boosting Schema Matchers. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 283–300. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Marsland, S.: Machine Learning: an Algorithmic Perspective. Chapman & Hall/CRC (2009)Google Scholar
  20. 20.
    Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to WordNet: an On-line Lexical Database. International Journal of Lexicography 3(4), 235–244 (1990)CrossRefGoogle Scholar
  21. 21.
    Mochol, M., Jentzsch, A.: Towards a Rule-Based Matcher Selection. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 109–119. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Mochol, M., Jentzsch, A., Euzenat, J.: Applying an Analytic Method for Matching Approach Selection. In: ISWC International Workshop on Ontology Matching (OM). CEUR Workshop Proceedings, vol. 225 (2006)Google Scholar
  23. 23.
    Ngo, D., Bellahsene, Z., Coletta, R.: YAM++ Results for OAEI 2011. In: ISWC International Workshop on Ontology Matching (OM). CEUR Workshop Proceedings, vol. 814, pp. 228–235 (2011)Google Scholar
  24. 24.
    Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)Google Scholar
  25. 25.
    Shi, F., Li, J., Tang, J., Xie, G., Li, H.: Actively Learning Ontology Matching via User Interaction. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 585–600. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Tartir, S., Budak Arpinar, I., Moore, M., Sheth, A.P., Aleman-Meza, B.: OntoQA: Metric-Based Ontology Quality Analysis. In: IEEE Workshop on Knowledge Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources, vol. 9, pp. 45–53 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Isabel F. Cruz
    • 1
  • Alessio Fabiani
    • 1
  • Federico Caimi
    • 1
  • Cosmin Stroe
    • 1
  • Matteo Palmonari
    • 2
  1. 1.ADVIS Lab, Department of Computer ScienceUniversity of Illinois at ChicagoUSA
  2. 2.DISCoUniversity of Milan-BicoccaItaly

Personalised recommendations