Advertisement

SAFD — An R Package for Statistical Analysis of Fuzzy Data

  • Wolfgang Trutschnig
  • María Asunción Lubiano
  • Julia Lastra
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 285)

Abstract

The R package SAFD (Statistical Analysis of Fuzzy Data) provides basic tools for elementary statistics with one dimensional Fuzzy Data in the form of polygonal fuzzy numbers. In particular, the package contains functions for the standard operations on the class of fuzzy numbers (sum, scalar product, mean, Hukuhara difference, quantiles) as well as for calculating (Bertoluzza) distance, sample variance, sample covariance, sample correlation, and the Dempster-Shafer (levelwise) histogram. Moreover SAFD facilitates functions for the simulation of fuzzy random variables, for bootstrap tests for the equality of means as well as a function for linear regression given trapezoidal fuzzy data. The aim of this paper is to explain the functionality of the package and to illustrate its usage by various examples.

Keywords

Fuzzy Number Sample Covariance Bootstrap Test Fuzzy Random Variable Fuzzy Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertoluzza, C., Corral, N., Salas, A.: On a new class of distances between fuzzy numbers. Mathware & Soft Comput. 2, 71–84 (1995)MathSciNetMATHGoogle Scholar
  2. 2.
    Colubi, A.: Statistical inference about the means of fuzzy random variables: Applications to the analysis of fuzzy- and real-valued data. Fuzzy Sets and Systems 160(3), 344–356 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    González-Rodríguez, G., Blanco, A., Colubi, A., Lubiano, M.A.: Estimation of a simple linear regression model for fuzzy random variables. Fuzzy Sets and Systems 160(3), 357–370 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    González-Rodríguez, G., Colubi, A., Trutschnig, W.: Simulation of fuzzy random variables. Information Sciences 179(5), 642–653 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Hesketh, B., Hesketh, T., Hansen, J.-I., Goranson, D.: Use of fuzzy variables in developing new scales from the strong interest inventory. J. Counseling Psychology 42, 85–99 (1995)CrossRefGoogle Scholar
  6. 6.
    Lubiano, M.A., Trutschnig, W.: ANOVA for Fuzzy Random Variables Using the R-package SAFD. In: Borgelt, C., et al. (eds.) Combining Soft Computing and Statistical Methods in Data Analysis, pp. 449–456. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Möller, B., Beer, M.: Fuzzy Randomness — Uncertainty in Civil Engineering and Computational Mechanics. Springer, Berlin (2004)MATHGoogle Scholar
  8. 8.
    Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Sinova, B., Gil, M.A., Colubi, A., Van Aelst, S.: The median of a random fuzzy number. The 1-norm distance approach. Fuzzy Sets and Systems (to appear, 2012)Google Scholar
  10. 10.
    Trutschnig, W.: A strong consistency result for fuzzy relative frequencies interpreted as estimator for the fuzzy-valued probability. Fuzzy Sets and Systems 159(3), 259–269 (2008)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Trutschnig, W., González-Rodríguez, G., Colubi, A., Gil, M.A.: A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread. Information Sciences 179(23), 3964–3972 (2009)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Viertl, R., Hareter, D.: Beschreibung und Analyse unscharfer Information: Statistische Methoden für unscharfe Daten. Springer, Wien New York (2006)MATHGoogle Scholar
  13. 13.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Part 1 Inform. Sci. 8, 199–249; Part 2. Inform. Sci. 8, 301–353; Part 3. Inform. Sci. 9, 43–80 (1975)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  • Wolfgang Trutschnig
    • 1
  • María Asunción Lubiano
    • 2
  • Julia Lastra
    • 1
  1. 1.Edificio de InvestigaciónEuropean Centre for Soft ComputingMieresSpain
  2. 2.Departamento de Estadística e I.O. y D.M.Universidad de OviedoOviedoSpain

Personalised recommendations