Application: Impacts on Ship Structural Loads

Chapter
Part of the Ocean Engineering & Oceanography book series (OEO, volume 2)

Abstract

In this chapter, it is explored how the estimated long-term trends can be related to the structural loads and response calculations of ships and how load calculations can be updated to take future projections of the ocean wave climate into account. The potential impact of the estimated long-term trends of significant wave height on the wave-induced structural loads of an oil tanker will be discussed and illustrated by an example. For the purpose of this illustration, the extrapolated linear long-term trends from the monthly maximum data and the trends obtained from the extended model with regression on the B1 emission scenario will be used, but any estimated trend could be incorporated in the load calculations in a similar way.

Keywords

Wave Period Significant Wave Height First Order Reliability Method Marine Structure Failure Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Athanassoulis, G., Belibassakis, K.: Probabilistic description of metocean parameters by means of kernel density models 1. theoretical backgrounds and first results. Appl. Ocean Res. 24, 1–20 (2002)CrossRefGoogle Scholar
  2. 2.
    Baarholm, G.S., Haver, S., Økland, O.D.: Combining contours of significant wave height and peak period with platform response distributions for predicting design response. Mar. Struct. 23, 147–163 (2010)CrossRefGoogle Scholar
  3. 3.
    Bitner-Gregersen, E.: Joint probabilistic description for combined seas. In: Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2005). American Society of Mechanical Engineers (ASME) (2005)Google Scholar
  4. 4.
    Bitner-Gregersen, E.: Uncertainties of joint long-term probabilistic modelling of wind sea and swell. In: Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2010). American Society of Mechanical Engineers (ASME) (2010)Google Scholar
  5. 5.
    Bitner-Gregersen, E., Haver, S.: Joint long term description of environmental parameters for structural response calculation. In: Proceedings of the 2nd International Workshop on Wave Hindcasting and Forecasting (1989)Google Scholar
  6. 6.
    Bitner-Gregersen, E., Haver, S.: Joint environmental model for reliability calculations. In: Proceedings of the 1st International Offshore and Polar Engineering conference (ISOPE 1991). The International Society of Offshore and Polar Engineering (ISOPE) (1991)Google Scholar
  7. 7.
    Bitner-Gregersen, E.M.: Appendix: Joint long term distribution of Hs, Tp. In: Madsen, H.O., Rooney, P., Bitner-Gregersen, E. (eds.) Probabilistic Calculation of Design Criteria for Ultimate Tether Capacity of Snorre TLP. Det Norske Veritas, Report No. 87–31 (1988)Google Scholar
  8. 8.
    Bitner-Gregersen, E.M., Cramer, E.H., Løseth, R.: Uncertainties of load characteristics and fatigue damage of ship structures. Mar. Struct. 8, 97–117 (1995)CrossRefGoogle Scholar
  9. 9.
    Bitner-Gregersen, E.M., Hørte, T., Skjong, R.: Potential impact of climate change on tanker design. In: Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2011). American Society of Mechanical Engineers (ASME) (2011)Google Scholar
  10. 10.
    Cousineau, D.: Fitting the three-parameter Weibull distribution: Review and evaluation of existing and new methods. IEEE Trans. Dielectr. Electr. Insul. 16, 281–288 (2009)CrossRefGoogle Scholar
  11. 11.
    Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hersbach, H., Hólm, E., Isaksen, L., Kållberg, P., Köhler, M., MAtricardi, M., McNally, A., Monge-Sanz, B., Morcrette, J.J., Park, B.K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.N., Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011)CrossRefGoogle Scholar
  12. 12.
    Der Kiuregihan, A., Liu, P.L.: Structural reliability under incomplete probability information. J. Eng. Mech. 112, 85–104 (1986)CrossRefGoogle Scholar
  13. 13.
    DNV: Environmental Conditions and Environmental Loads. Det Norske Veritas. DNV-RP-C205 (2010)Google Scholar
  14. 14.
    Ferreira, J., Guedes Soares, C.: Modelling bivariate distributions of significant wave height and mean wave period. Appl. Ocean Res. 24, 31–45 (2002)CrossRefGoogle Scholar
  15. 15.
    Haver, S.: Analysis of uncertainties related to the stochastic modelling of ocean waves. Tech. Rep. UR-80-09, Norges tekniske høgskole (1980)Google Scholar
  16. 16.
    Haver, S., Winterstein, S.: Environmental contour lines: A method for estimating long term extremes by a short term anaysis. Trans. Soc. Nav. Archit. Mar. Eng. 116, 116–127 (2009)Google Scholar
  17. 17.
    Huseby, A.B., Vanem, E., Natvig, B.: A new approach to environmental contours for ocean engineering applications based on direct Monte Carlo simulations. Ocean Eng. 60, 124–135 (2013)CrossRefGoogle Scholar
  18. 18.
    Jensen, J.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30, 175–193 (1906)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Jonathan, P., Ewans, K., Flynn, J.: On the estimation of ocean engineering design contours. In: Proceedings of the 30th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2011). American Society of Mechanical Engineers (ASME) (2011)Google Scholar
  20. 20.
    Jonathan, P., Flynn, J., Ewans, K.: Joint modelling of wave spectral parameters for extreme sea states. Ocean Eng. 37, 1070–1080 (2010)CrossRefGoogle Scholar
  21. 21.
    Labeyrie, J., Olagnon, M.: Stochastic sensitiveness to combined extreme environmental loads in structural reliability. In: Proceedings of the 12th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 1993). American Society of Mechanical Engineers (ASME) (1993)Google Scholar
  22. 22.
    Leira, B.J.: A comparison of stochastic process models for definition of design contours. Struct. Saf. 30, 493–505 (2008)CrossRefGoogle Scholar
  23. 23.
    Mathisen, J., Bitner-Gregersen, E.: Joint distributions for significant wave height and wave zero-up-crossing period. Appl. Ocean Res. 12, 93–103 (1990)CrossRefGoogle Scholar
  24. 24.
    Nataf, A.: Détermination des distributions dont les marges sont données. Comptes Rendus de l’Académie des Sciences 255, 42–43 (1962)MathSciNetMATHGoogle Scholar
  25. 25.
    Nordenstrøm, N.: A method to predict long-term distributions of waves and wave-induced motions and loads on ships and other floating structures. Tech. Rep. 81, Det Norske, Veritas (1973)Google Scholar
  26. 26.
    Prince-Wright, R.: Maximum likelihood models of joint environmental data for TLP design. In: Proceedings of the 14th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 1995). American Society of Mechanical Engineers (ASME) (1995)Google Scholar
  27. 27.
    Repko, A., Van Gelder, P., Voortman, H., Vrijling, J.: Bivariate description of offshore wave conditions with physics-based extreme value statistics. Appl. Ocean Res. 26, 162–170 (2004)CrossRefGoogle Scholar
  28. 28.
    Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23, 470–472 (1952)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sagrilo, L., Næss, A., Doria, A.: On the long-term response of marine structures. Appl. Ocean Res. 33, 208–214 (2011)CrossRefGoogle Scholar
  30. 30.
    Vanem, E., Bitner-Gregersen, E.: Stochastic modelling of long-term trends in the wave climate and its potential impact on ship structural loads. Appl. Ocean Res. 37, 235–248 (2012)CrossRefGoogle Scholar
  31. 31.
    Vanem, E., Huseby, A.B., Natvig, B.: A stochastic model in space and time for monthly maximum significant wave height. In: Abrahamsen, P., Haugen, R., Kolbjørnsen, O. (eds.) Geostatistics Oslo 2012, pp. 505–517. Springer, Heidelberg (2012)Google Scholar
  32. 32.
    Vanem, E., Huseby, A.B., Natvig, B.: Bayesian hierarchical spatio-temporal modelling of trends and future projections in the ocean wave climate with a CO\(_2\) regression component. Environ. Ecol. Stat. (in press) (2013)Google Scholar
  33. 33.
    Vanem, E., Natvig, B., Huseby, A.B., Bitner-Gregersen, E.M.: An illustration of the effect of climate change on the ocean wave climate—a stochastic model. In: Singh, B.R. (ed.) Climate Change—Realities, Impacts Over Ice Cap, Sea Level and Risks, pp. 481–508. InTech, Rijeka (2013)Google Scholar
  34. 34.
    Winterstein, S., Ude, T., Cornell, C., Bjerager, P., Haver, S.: Environmental parameters for extreme response: Inverse FORM with omission factors. In: Proceedings of the 6th International Conference on Structural Safety and Reliability (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of OsloOsloNorway

Personalised recommendations