From the GCRS to the ITRS

  • Michael Soffel
  • Ralf Langhans
Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

Polar motion means motion of the Earth’s rotation axis with respect to the Earth’s surface. The possibility for such a motion of the Earth’s rotation axis was first suggested by Leonhard Euler in 1765. It should reflect itself in elevation variations of the pole with a period of about 10 months. The observational verification by means of latitude variations, however, remained unsuccessful for a long time.

Keywords

Polar Motion International VLBI Service Chandler Wobble Latitude Variation IERS Convention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aoki S, Kinoshita H (1983) Note on the relation between the equinox and Guinot’s non-rotating origin. Celestial Mech Dyn Astron 29:335–360ADSMATHCrossRefGoogle Scholar
  2. Aoki S, Guinot B, Kaplan GH, Kinoshita H, McCarthy DD, Seidelmann PK (1982) The new definition of Universal time. A&A 105:359–361ADSGoogle Scholar
  3. Artz T, Bockmann S, Nothnagel A, Steigenberger P (2010) Sub-diurnal variations in the Earth’s rotation from continuous VLBI campaigns. J Geophys Res 115:B05404, 16Google Scholar
  4. Bizouard C, Folgueira M, Souchay J (2000) Comparison of the short periodic rigid Earth nutation series. In: Dick S, McCarthy D, Luzum B (eds) Proceedings of IAU Colloquium 178, Publications of the Astron. Soc. Pac. Conf. Ser., vol 208, pp 613–617Google Scholar
  5. Bizouard C, Folgueira M, Souchay J (2001) Short periodic nutations: comparison between series and influence on polar motion. In: Capitaine N (ed) Proceedings of the Journées 2000 - Systèmes de Référence spatio-temporels, Paris, 2001, pp 260–265Google Scholar
  6. Bretagnon P (1982) Theory for the motion of all the planets – the VSOP82 solution. A&A 114:278ADSMATHGoogle Scholar
  7. Bretagnon P, Rocher P, Simon J-L (1997) Theory of the rotation of the rigid Earth. A&A 319(1):305–317ADSGoogle Scholar
  8. Brzeziński A (2001) Diurnal and sub-diurnal terms in nutation: A simple theoretical model for a non-rigid Earth. In: Capitaine N (ed) Proceedings of the Journées 2000 - Systèmes de Référence spatio-temporels, Paris, 2001, pp 243–251Google Scholar
  9. Brzeziński A (2002) Circular 2, IAU Comission 19 WG “Precession–Nutation”Google Scholar
  10. Brzeziński A, Capitaine N (2003) Lunisolar perturbations in Earth rotation due to the triaxial figure of the Earth: Geophysical aspects. In: Capitaine N (ed) Proceedings of the Journées 2001 – Systèmes de Référence spatio-temporels, Paris, 2003, pp 51–58Google Scholar
  11. Capitaine N (1990) The Celestial pole coordinates. Celestial Mech Dyn Astron 48:127–143ADSGoogle Scholar
  12. Capitaine N, Wallace PT (2006) High precision methods for locating the Celestial intermediate pole and origin. A&A 450:855–872ADSCrossRefGoogle Scholar
  13. Capitaine N, Guinot B, Souchay J (1986) A non-rotating origin on the instantaneous equator: Definition, properties and use. Celestial Mech Dyn Astron 39:283–307ADSMATHCrossRefGoogle Scholar
  14. Capitaine N, Guinot B, McCarthy D (2000) Definition of the Celestial ephemeris Origin and of UT1 in the International Celestial Reference Frame. A&A 355:398–405ADSGoogle Scholar
  15. Capitaine N, Chapront J, Lambert S, Wallace P (2003a) Expressions for the Celestial intermediate pole and Celestial ephemeris origin consistent with the IAU 2000A precession–nutation model. A&A 400:1145–1154ADSCrossRefGoogle Scholar
  16. Capitaine N, Wallace P, McCarthy D (2003b) Expressions to implement the IAU-2000 definition of UT1. A&A 406:1135–1149ADSCrossRefGoogle Scholar
  17. Capitaine N, Wallace P, Chapront J (2003c) Expressions for IAU-2000 precession quantities. A&A 412:567–586ADSCrossRefGoogle Scholar
  18. Chapront-Touzé M, Chapront J (1983) The lunar ephemeris ELP 2000. A&A 124:50–62ADSGoogle Scholar
  19. Chapront J, Chapront-Touzé M, Francou G (2002) An new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements. A&A 387: 700–709ADSCrossRefGoogle Scholar
  20. Defraigne P, Dehant V, Paquet P (1995) Link between the retrograde-prograde nutations and nutations in obliquity and longitude. Celestial Mech Dyn Astron 62:363–376ADSCrossRefGoogle Scholar
  21. Escapa A, Getino J, Ferrándiz JM (2002) Indirect effect of the triaxiality in the Hamiltonian theory for the rigid Earth nutations. A&A 389(3):1047–1054ADSCrossRefGoogle Scholar
  22. Escapa A, Getino J, Ferrándiz JM (2003) Influence of the triaxiality of the non-rigid Earth on the J2 forced nutations. In: Capitaine N (ed) Proceedings of the Journées 2001 - Systèmes de Référence spatio-temporels, Paris, 2003Google Scholar
  23. Fedorov EP (1963) Nutation and forced motion of the Earth’s pole. Pergamon Press, OxfordGoogle Scholar
  24. Folgueira M, Souchay J, Kinoshita H (1998a) Effects on the nutation of the non-zonal harmonics of third degree. Celestial Mech Dyn Astron 69(4):373–402ADSMATHCrossRefGoogle Scholar
  25. Folgueira M, Souchay J, Kinoshita H (1998b) Effects on the nutation of C4m and S4m harmonics. Celestial Mech Dyn Astron 70(3):147–157ADSMATHCrossRefGoogle Scholar
  26. Folgueira M, Bizouard C, Souchay J (2001) Diurnal and subdiurnal luni-solar nutations: Comparisons and effects. Celestial Mech Dyn Astron 81:191–217ADSMATHCrossRefGoogle Scholar
  27. Fukushima T (2001) Global rotation of the nonrotating origin. Astron J 122:482–486ADSCrossRefGoogle Scholar
  28. Getino J, Ferrándiz JM, Escapa A (2001) Hamiltonian theory for the non-rigid Earth: Semi-diurnal terms. A&A 370(1):330–341ADSCrossRefGoogle Scholar
  29. Guinot B (1979) Basic problems in the kinematics of the rotation of the Earth. In: McCarthy D, Pilkington J (eds) Time and the Earth’s rotation. Reidel Publishing Company, Dordrecht, pp 7–18CrossRefGoogle Scholar
  30. Herring T, Mathews P, Buffett B (2002) Modelling of nutation-precession: Very long baseline interferometry results. J Geophys Res 107:B4CrossRefGoogle Scholar
  31. Jeffreys H (1963) Preface to Fedorov (1963)Google Scholar
  32. Kinoshita H, Souchay J (1990) The theory of nutation for the rigid Earth model at the second order. Celestial Mech Dyn Astron 48:187ADSMATHCrossRefGoogle Scholar
  33. Lambert S, Bizouard C (2002) Positioning the terrestrial ephemeris origin in the international terrestrial frame. A&A 394:317–321ADSCrossRefGoogle Scholar
  34. Lieske J, Lederle T, Fricke W, Morando B (1977) Expression for the precession quantities based upon the IAU (1976) system of astronomical constants. A&A 58:1–16ADSGoogle Scholar
  35. Mathews P, Bretagnon P (2003) Polar motion equivalent to high frequency nutations for a nonrigid earth with anelastic mantle. A&A 400:1113–1128ADSCrossRefGoogle Scholar
  36. Mathews P, Shapiro II (1992) Nutations of the Earth. Ann Rev Earth Planet Sci 20:469–500ADSCrossRefGoogle Scholar
  37. Mathews P, Herring T, Buffet B (2002) Modelling of nutation-precession: New nutation series for nonrigid Earth and insights into the Earth’s interior. J Geophys Res 107:B4CrossRefGoogle Scholar
  38. McCarthy D, Petit G (2003) IERS Conventions 2003, IERS Technical Note No. 32, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, 2004Google Scholar
  39. McCarthy DD, Capitaine N (2002) Practical Consequences of Resolution B1.6 IAU2000 Precession-Nutation Model, Resolution B1.7 Definition of Celestial Intermediate Pole, Resolution B1.8 Definition and Use of Celestial and Terrestrial Ephemeris Origin, IERS Technical Note No. 28Google Scholar
  40. Nilsson T, Böhm J, Schuh H (2010) Sub-diurnal Earth rotation variations observed by VLBI. Artif Satellites 45(2):49–55. doi:10.2478/v10018-010-0005-8ADSGoogle Scholar
  41. Oppolzer T (1886) Traité de détermination des orbites. Gauthiers-Villars, ParisMATHGoogle Scholar
  42. Petit G, Luzum B (eds) (2010) IERS conventions, IERS Technical Note No. 36Google Scholar
  43. Ray R, Steinberg D, Chao B, Cartwright D (1994) Diurnal and semidiurnal variations in the Earth’s rotation rate induced by oceanic tides. Science 264:830–832ADSCrossRefGoogle Scholar
  44. Roosbeek F (1999) Diurnal and sub-diurnal terms in RDAN97 series. Celestial Mech Dyn Astron 74(4):243–252ADSMATHCrossRefGoogle Scholar
  45. von Schuh H, Dill R, Greiner-Mai H, Kutterer H, Müller J, Nothnagel A, Richter B, Rothacher M, Schreiber U, Soffel M (2003) Erdrotation und globale dynamische Prozesse. Mitteilungen des Bundesamtes für Kartographie und Geodäsie (ISSN 1436–3445), Band 32, erarbeitet innerhalb des DFG-Forschungsvorhabens “Rotation der Erde”. Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main. ISBN 3-89888-883-5, 2003, IV + 118 ppGoogle Scholar
  46. Schwiderski EW (1980) On charting global ocean tides. Rev Geophys Space Phys 18:243–268ADSCrossRefGoogle Scholar
  47. Simon J-L, Bretagnon P, Chapront J, Chapront-Touzé M, Francou G, Laskar J (1994) Numerical expressions for precession formulae and mean elements for the Moon and Planets A&A 282:663–683ADSGoogle Scholar
  48. Souchay J, Loysel B, Kinoshita H, Folgueira M (1999) Corrections and new developments in rigid Earth nutation theory, III. Final tables REN-2000 including crossed-nutation and spin-orbit coupling effects. A&A Suppl Ser 135:111–131ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Soffel
    • 1
  • Ralf Langhans
    • 1
  1. 1.Institute for Planetary GeodesyDresden Technical University Lohrmann ObservatoryDresdenGermany

Personalised recommendations