Astronomical Constants

  • Michael Soffel
  • Ralf Langhans
Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

The following part is based upon Soffel and Klioner (2008). Astronomical constants appear when the dynamics of an astronomical system is under discussion. From a fundamental point of view, the dynamics of any physical system can be described by means of just a few fundamental physical interactions: gravity, electromagnetism, and the weak or the strong force.

Keywords

Realistic Error Potential Coefficient Body Constant Natural Constant Astronomical Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson JD, Colombo G, Esposito PB, Lau EL, Trager GB (1987) The mass, gravity field, and ephemeris of Mercury. Icarus 71:337–349ADSCrossRefGoogle Scholar
  2. Becker P, Gläser M (2001) Kilogramm und Mol: SI-Basiseinheiten für Masse und Stoffmenge. Physik in unserer Zeit 32:254–259ADSCrossRefGoogle Scholar
  3. Brown ME, Schaller EL (2007) The Mass of Dwarf Planet Eris. Science 316:1585ADSCrossRefGoogle Scholar
  4. CODATA (2006), Mohr P, Taylor B, Newell D (2008) CODATA recommended values of the physical constants: 2006. Rev Mod Phys 80:633–730Google Scholar
  5. Damour T, Soffel M, Xu C (1991) General-relativistic Celestial mechanics I. Phys Rev D 43:3273MathSciNetADSCrossRefGoogle Scholar
  6. Folkner WM, Williams JG, Boggs DH (2009) The planetary and lunar ephemerides DE421. Interoffice Memorandum, 343.R-08-003; see also: IPN Progress Report 42–178, August 15, 2009Google Scholar
  7. Jacobson RA (2009) The orbits of the Neptunian satellites and the orientation of the pole of Neptune. Astron J 137:4322–4329ADSCrossRefGoogle Scholar
  8. Jacobson RA, Campbell J, Taylor AH, Synott SP (1992) The masses of Uranus and its major satellites from voyager tracking data and Earth-based Uranian satellite data. Astron J 103(6):2068–2078ADSCrossRefGoogle Scholar
  9. Jacobson RA, Haw RJ, McElrath TP, Antreasian PG (2000) A Comprehensive Orbit Reconstruction for the Galileo Prime Mission in the J2000 System. J Astronaut Sci 48(4):495–516Google Scholar
  10. Jacobson RA, Antreasian PG, Bordi JJ, Criddle KE, Ionasescu R, Jones JB, Mackenzie RA, Meek MC, Parcher D, Pelletier FJ, Owen WM Jr, Roth DC, Roundhill IM, Stauch JR (2006) The gravity field of the Saturnian system from satellite observations and spacecraft tracking data. Astron J 132:2520ADSCrossRefGoogle Scholar
  11. Konopliv AS, Banerdt W, Sjogren W (1999) Venus gravity: 180th degree and order model. Icarus 139:3–18ADSCrossRefGoogle Scholar
  12. Konopliv AS, Yoder CF, Standish EM, Yuan DN, Sjogren WL (2006) A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182:23–50ADSCrossRefGoogle Scholar
  13. Luzum B, Capitaine N, Fienga A, Folkner W, Fukushima T, Hilton J, Hohenkerk C, Krasinsky G, Petit G, Pitjeva E, Soffel M, Wallace P (2011) The IAU 2009 system of astronomical constants: The report of the IAU working group on numerical standards for fundamental Astronomy. Celestial Mech Dyn Astron 110:293–304ADSCrossRefGoogle Scholar
  14. Müller H, Herrmann S, Braxmaier C, Schiller S, Peters A (2003) Modern Michelson-Morley experiment using cryogenic optical resonators. Phys Rev Lett 91:020401CrossRefGoogle Scholar
  15. Pitjeva EV, Standish EM (2007) private communicationGoogle Scholar
  16. Soffel M, Klioner S (2008) On astronomical constants. In: Capitaine N (ed) Proceedings of the Journées 2007 – Systèmes de Référence spatio-temporels, Paris Observatory, 2008, pp 58–60Google Scholar
  17. Standish EM Jr (2006) JPL Planetary, DE414, Interoffice Memorandum, 343R-06-002Google Scholar
  18. Tholen DJ, Buie MW, Grundy W, Elliott G (2008) Masses of Nix and Hydra. Astron J 135(3): 777–784ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Soffel
    • 1
  • Ralf Langhans
    • 1
  1. 1.Institute for Planetary GeodesyDresden Technical University Lohrmann ObservatoryDresdenGermany

Personalised recommendations