Visualizing Clusters in Parallel Coordinates for Visual Knowledge Discovery

  • Yang Xiang
  • David Fuhry
  • Ruoming Jin
  • Ye Zhao
  • Kun Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7301)


Parallel coordinates is frequently used to visualize multi-dimensional data. In this paper, we are interested in how to effectively visualize clusters of multi-dimensional data in parallel coordinates for the purpose of facilitating knowledge discovery. In particular, we would like to efficiently find a good order of coordinates for different emphases on visual knowledge discovery. To solve this problem, we link it to the metric-space Hamiltonian path problem by defining the cost between every pair of coordinates as the number of inter-cluster or intra-cluster crossings. This definition connects to various efficient solutions and leads to very fast algorithms. In addition, to better observe cluster interactions, we also propose to shape clusters smoothly by an energy reduction model which provides both macro and micro view of clusters.


Multi-dimensional Data Visualization Parallel Coordinates Cluster knowledge discovery Graph Theory Metric Space Metric Hamiltonian path problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ankerst, M., Berchtold, S., Keim, D.A.: Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In: IEEE Symposium on Information Visualization (INFOVIS), p. 52 (1998)Google Scholar
  2. 2.
    Artero, A.O., de Oliveira, M.C.F., Levkowitz, H.: Uncovering clusters in crowded parallel coordinates visualizations. In: IEEE Symposium on Information Visualization (INFOVIS), pp. 81–88 (2004)Google Scholar
  3. 3.
    Berthold, M.R., Hall, L.O.: Visualizing fuzzy points in parallel coordinates. IEEE Transactions on Fuzzy Systems 11(3), 369–374 (2003)CrossRefGoogle Scholar
  4. 4.
    Böckenhauer, H.-J., Hromkovič, J., Kneis, J., Kupke, J.: On the Approximation Hardness of Some Generalizations of TSP. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 184–195. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Graduate School of Industrial Administration, CMU, Report 388 (1976)Google Scholar
  6. 6.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press (2001)Google Scholar
  7. 7.
    Dasgupta, A., Kosara, R.: Pargnostics: Screen-Space Metrics for Parallel Coordinates. IEEE Transactions on Visualization and Computer Graphics 16(6), 1017–1026 (2010)CrossRefGoogle Scholar
  8. 8.
    Ellis, G., Dix, A.: Enabling automatic clutter reduction in parallel coordinate plots. IEEE Transactions on Visualization and Computer Graphics 12, 717–724 (2006)CrossRefGoogle Scholar
  9. 9.
    Fua, Y.-H., Ward, M.O., Rundensteiner, E.A.: Hierarchical parallel coordinates for exploration of large datasets. IEEE Visualization, 43–50 (1999)Google Scholar
  10. 10.
    Gross, J.L., Yellen, J.: Graph theory and its applications. CRC Press (2006)Google Scholar
  11. 11.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2000)Google Scholar
  12. 12.
    Hassin, R., Rubinstein, S.: A 7/8-approximation algorithm for metric max tsp. Inf. Process. Lett. 81(5), 247–251 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Holten, D., Van Wijk, J.J.: Evaluation of Cluster Identification Performance for Different PCP Variants. Computer Graphics Forum 29(3), 793–802 (2010)CrossRefGoogle Scholar
  14. 14.
    Hoogeveen, J.A.: Analysis of christofides’ heuristic: Some paths are more difficult than cycles. Operations Research Letters 10(5), 291–295 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hurley, C.B.: Clustering visualizations of multidimensional data. Journal of Computational and Graphical Statistics 13(4), 788–806 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hurley, C.B., Oldford, R.W.: Pairwise display of high-dimensional information via eulerian tours and hamiltonian decompositions. Journal of Computational and Graphical Statistics 19(4), 861–886 (2010)CrossRefGoogle Scholar
  17. 17.
    Hurley, C.B., Oldford, R.W.: Eulerian tour algorithms for data visualization and the pairviz package. Computational Statistics 26(4), 613–633 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Inselberg, A.: The plane with parallel coordinates. The Visual Computer 1(2), 69–91 (1985)zbMATHCrossRefGoogle Scholar
  19. 19.
    Jain, A.K., Narasimha Murty, M., Flynn, P.J.: Data clustering: A review. ACM Comput. Surv. 31(3), 264–323 (1999)CrossRefGoogle Scholar
  20. 20.
    Johansson, J., Ljung, P., Jern, M., Cooper, M.: Revealing structure within clustered parallel coordinates displays. In: IEEE Symposium on Information Visualization (INFOVIS), p. 17 (2005)Google Scholar
  21. 21.
    Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Knight, W.R.: A computer method for calculating kendall’s tau with ungrouped data. Journal of the American Statistical Association, 436–439 (1966)Google Scholar
  23. 23.
    Kosara, R., Bendix, F., Hauser, H.: Parallel sets: Interactive exploration and visual analysis of categorical data. IEEE Trans. Vis. Comput. Graph. 12(4), 558–568 (2006)CrossRefGoogle Scholar
  24. 24.
    Laporte, G.: The traveling salesman problem: An overview of exact and approximate algorithms. European Journal of Operational Research 59(2), 231–247 (1992)zbMATHCrossRefGoogle Scholar
  25. 25.
    Moustafa, R., Wegman, E.: Multivariate Continuous Data - Parallel Coordinates. Springer, New York (2006)Google Scholar
  26. 26.
    Nelson, R.B.: Kendall tau metric. Encyclopaedia of Mathematics 3, 226–227 (2001)Google Scholar
  27. 27.
    Peng, W., Ward, M.O., Rundensteiner, E.A.: Clutter reduction in multi-dimensional data visualization using dimension reordering. In: IEEE Symposium on Information Visualization (INFOVIS), pp. 89–96 (2004)Google Scholar
  28. 28.
    Siirtola, H., Räihä, K.J.: Interacting with parallel coordinates. Interacting with Computers 18(6), 1278–1309 (2006)CrossRefGoogle Scholar
  29. 29.
    Wegman, E.J.: The grand tour in k-dimensions. In: Computing Science and Statistics: Proceedings of the 22nd Symposium on the Interface, pp. 127–136 (1991)Google Scholar
  30. 30.
    Wegman, E.J.: Hyperdimensional data analysis using parallel coordinates. Journal of the American Statistical Association 85(411), 664–675 (1990)Google Scholar
  31. 31.
    Wegman, E.J.: Visual data mining. Statistics in Medicine 22, 1383–1397 (2003)CrossRefGoogle Scholar
  32. 32.
    Wilhelm, A.F.X., Wegman, E.J., Symanzik, J.: Visual clustering and classification: The oronsay particle size data set revisited. Computational Statistics 14, 109–146 (1999)zbMATHGoogle Scholar
  33. 33.
    Wong, P.C., Bergeron, R.D.: 30 years of multidimensional multivariate visualization. Scientific Visualization, 3–33 (1994)Google Scholar
  34. 34.
    Yang, J., Peng, W., Ward, M.O., Rundensteiner, E.A.: Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. In: INFOVIS (2003)Google Scholar
  35. 35.
    Zhao, K., Liu, B., Tirpak, T.M., Schaller, A.: Detecting patterns of change using enhanced parallel coordinates visualization. In: ICDM, p. 747 (2003)Google Scholar
  36. 36.
    Zhou, H., Yuan, X., Qu, H., Cui, W., Chen, B.: Visual clustering in parallel coordinates. Comput. Graph. Forum 27(3), 1047–1054 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yang Xiang
    • 1
  • David Fuhry
    • 2
  • Ruoming Jin
    • 3
  • Ye Zhao
    • 3
  • Kun Huang
    • 1
  1. 1.Department of Biomedical InformaticsThe Ohio State UniversityColumbusUSA
  2. 2.Department of Computer Science and EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.Department of Computer ScienceKent State UniversityKentUSA

Personalised recommendations