Semantic Social Network Analysis with Text Corpora

  • Dong-mei Yang
  • Hui Zheng
  • Ji-kun Yan
  • Ye Jin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7301)


We present the Document-Entity-Topic (DET) model for semantic social network analysis which tries to find out the interested entities through the topics we aim at, detect groups according to the entities which concern the similar topics, and rank the plentiful entities in a document to figure out the most valuable ones. DET model learns the topic distributions by the literal descriptions of entities. The model is similar to Author-Topic (AT) model, adding the key attribute that the distribution of entities in a document is not uniform but Dirichlet allocation. We experiment on the “Libya Event” data set which is collected from the Internet. DET model increases the precision on tasks of social network analysis and gives much lower perplexity than AT model.


Semantic Social Network Analysis Topic Model Entity Modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blei, D.: Introduction to Probabilistic Topic Models. Communications of the ACM (2011)Google Scholar
  2. 2.
    Steyvers, M., Griffiths, T.: Probabilistic Topic Models. Handbook of Latent Semantic Analysis 427 (2007)Google Scholar
  3. 3.
    Blei, D., Carin, L., Dunson, D.: Topic Models. IEEE Signal Processing Magazine 27(6), 55–65 (2010)Google Scholar
  4. 4.
    Blei, D., Ng, A., Jordan, M.: Latent Dirichlet Allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  5. 5.
    Rosen-Zvi, M., Chemudugunta, C., Griffiths, T., Smyth, P., Steyvers, M.: Learning Author-Topic Models from Text Corpora. ACM Transactions on Information Systems (TOIS) 28(1), 1–38 (2010)CrossRefGoogle Scholar
  6. 6.
    Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The Author-Topic Model for Authors and Documents, pp. 478–494. AUAI Press (2004)Google Scholar
  7. 7.
    Shiozaki, H., Eguchi, K., Ohkawa, T.: Entity Network Prediction Using Multitype Topic Models. Springer (2008)Google Scholar
  8. 8.
    Newman, D., Chemudugunta, C., Smyth, P.: Statistical Entity-Topic Models, pp. 680–686 (2006)Google Scholar
  9. 9.
    Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)zbMATHGoogle Scholar
  10. 10.
    AlSumait, L., Barbará, D., Gentle, J., Domeniconi, C.: Topic Significance Ranking of LDA Generative Models. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5781, pp. 67–82. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dong-mei Yang
    • 1
  • Hui Zheng
    • 1
  • Ji-kun Yan
    • 2
  • Ye Jin
    • 2
  1. 1.Science and Technology on Blind Signal Processing LaboratoryChina
  2. 2.Southwest Electronics and Telecommunication Technology Research InstituteChina

Personalised recommendations