Social Interaction in a Cooperative Brain-Computer Interface Game

  • Michel Obbink
  • Hayrettin Gürkök
  • Danny Plass-Oude Bos
  • Gido Hakvoort
  • Mannes Poel
  • Anton Nijholt
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 78)

Abstract

Does using a BCI influence the social interaction between people when playing a cooperative game? By measuring the amount of speech, utterances, instrumental gestures and empathic gestures during a cooperative game where two participants had to reach a certain goal, and questioning participants about their own experience afterwards this study attempts to provide answers to this question. The results showed that social interaction changed when using a BCI compared to using a mouse. There was a higher amount of utterances and empathic gestures. This indicates that the participants reacted more to the higher difficulty of the BCI selection method. Participants also reported that they felt they cooperated better during the use of the mouse.

Keywords

brain-computer interfaces social interaction games cooperation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayliss, J.: Use of the evoked potential P3 component for control in a virtual apartment. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(2), 113–116 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bin, G., Gao, X., Yan, Z., Hong, B., Gao, S.: An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. Journal of Neural Engineering 6(4), 46002 (2009)CrossRefGoogle Scholar
  3. 3.
    Cheng, M., Gao, X., Gao, S., Xu, D.: Design and implementation of a brain-computer interface with high transfer rates. IEEE Transactions on Biomedical Engineering 49(10), 1181–1186 (2002)CrossRefGoogle Scholar
  4. 4.
    Clark, H.H.: Using Language. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  5. 5.
    Farwell, L., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology 70(6), 510–523 (1988)CrossRefGoogle Scholar
  6. 6.
    Fowler, C., Richardson, M., Marsh, K., Shockley, K.: Language use, coordination, and the emergence of cooperative action. In: Coordination: Neural, Behavioral and Social Dynamics, pp. 261–279. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Lindley, S.E., Le Couteur, J., Berthouze, N.L.: Stirring up experience through movement in game play: effects on engagement and social behaviour. In: CHI 2008: Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, pp. 511–514. ACM, New York (2008)CrossRefGoogle Scholar
  8. 8.
    Lopez, M., Pelayo, F., Madrid, E., Prieto, A.: Statistical characterization of steady-state visual evoked potentials and their use in brain-computer interfaces. Neural Processing Letters 29(3), 179–187 (2009)CrossRefGoogle Scholar
  9. 9.
    Lord, C., Risi, S., Lambrecht, L., Cook, E.H., Leventhal, B.L., DiLavore, P.C., Pickles, A., Rutter, M.: The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders 30(3), 205–223 (2000)CrossRefGoogle Scholar
  10. 10.
    Nijholt, A., Reuderink, B., Oude Bos, D.: Turning Shortcomings into Challenges: Brain-Computer Interfaces for Games. In: Nijholt, A., Reidsma, D., Hondorp, H. (eds.) INTETAIN 2009. LNICST, vol. 9, pp. 153–168. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Plass-Oude Bos, D., Reuderink, B., Laar, B., Gürkök, H., Mühl, C., Poel, M., Nijholt, A., Heylen, D.: Brain-computer interfacing and games. In: Brain-Computer Interfaces, pp. 149–178. Springer, London (2010)CrossRefGoogle Scholar
  12. 12.
    Rebsamen, B., Burdet, E., Guan, C., Zhang, H., Teo, C.L., Zeng, Q., Ang, M., Laugier, C.: A brain-controlled wheelchair based on P300 and path guidance. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 1101–1106. IEEE, Piscataway (2006)Google Scholar
  13. 13.
    Reilly, E.L.: EEG recording and operation of apparatus. In: Electroencephalography: Basic Principles, Clinical Applications and Related Fields, pp. 122–142. Lippincott Williams & Wilkins, Baltimore (1999)Google Scholar
  14. 14.
    Ruen Shan, L., Ibrahim, F., Moghavvemi, M.: Assessment of steady-state visual evoked potential for brain computer communication. In: 3rd Kuala Lumpur International Conference on Biomedical Engineering, pp. 352–354. Springer, Heidelberg (2007)Google Scholar
  15. 15.
    Volosyak, I., Cecotti, H., Gräser, A.: Impact of Frequency Selection on LCD Screens for SSVEP Based Brain-Computer Interfaces. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 706–713. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Michel Obbink
    • 1
  • Hayrettin Gürkök
    • 1
  • Danny Plass-Oude Bos
    • 1
  • Gido Hakvoort
    • 1
  • Mannes Poel
    • 1
  • Anton Nijholt
    • 1
  1. 1.Human Media InteractionUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations