Score Based Aggregation of microRNA Target Orderings

  • Debarka Sengupta
  • Ujjwal Maulik
  • Sanghamitra Bandyopadhyay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7292)

Abstract

Rank aggregation refers to the task of combining different orderings of an identical set of objects to obtain a consensus ranked list. Other than meta-search in web mining, in last few years, this technique has successfully been employed to address problems arising from bioinformatics domain. Consensus ranking of disease related genes, miRNA targets are ample examples in this context. It can be argued that scores are more informative than mere ranks. Existing score based aggregation techniques are evolutionary in nature and consume significant amount of time. We, for the first time propose a Markov chain for score based aggregation ranked lists. The proposed method is found out-performing the existing methods in terms of time consumption (by far) and performance when used in context of microRNA (miRNA) target ranking. The supplementary materials are uploaded at: http://www.isical.ac.in/~bioinfo_miu/rankfuse.rar

Keywords

Condorcet Winner microRNA Target Rank Aggregation Disease Candidate Gene Consensus Ranking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Dwork et al., 2001]
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank Aggregation Methods for the Web. In: Proc. 10th International World Wide Web Conference, pp. 613–620 (2001)Google Scholar
  2. [Fagin et al., 2003]
    Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM Journal of Discrete Mathematics 7, 134–160 (2003)MathSciNetCrossRefGoogle Scholar
  3. [Pihur et al., 2009]
    Pihur, V., Datta, S., Datta, S.: RankAggreg, an R package for weighted rank aggregation. BMC Bioinformatics (2009)Google Scholar
  4. [Lin and Ding, 2008]
    Lin, S., Ding, J.: Integration of Ranked Lists via Cross Entropy Monte Carlo with Applications to mRNA and miRNA Studies. Biometrics (2008), doi:10.1111/j.1541-0420.2008.01044.xGoogle Scholar
  5. [Pihur et al., 2007]
    Pihur, V., Datta, S., Datta, S.: Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach. Bioinformatics 23(13), 1607–1615 (2007)CrossRefGoogle Scholar
  6. [Pihur et al., 2008]
    Pihur, V., Datta, S., Datta, S.: Finding cancer genes through meta-analysis of microarray experiments: Rank aggregation via the cross entropy algorithm. Genomics 92, 400–403 (2008)CrossRefGoogle Scholar
  7. [DeConde et al., 2006]
    DeConde, R., Hawley, S., Falcon, S., Clegg, N., Knudsen, B., Etzioni, R.: Combining results of microarrayexperiments: a rank aggregation approach. Proc. Stat. Appl. Genet. Mol. Biol. 5, Article15 (2006)Google Scholar
  8. [Krek et al., 2005]
    Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., Rajewsky, N.: Combinatorial microRNA target predictions. Nature Genetics 37, 495–500 (2005)CrossRefGoogle Scholar
  9. [John et al., 2004]
    John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., Marks, D.S.: Human microRNA targets. PLOS Biology 2, 1862–1879 (2004)CrossRefGoogle Scholar
  10. [Zhou et al., 2006]
    Zhou, J., Lin, S., Melfi, V., Verducci, J.: Composite MicroRNA target predictions and comparisons of several prediction algorithms. MBI Technical Report, No. 51 (2006)Google Scholar
  11. [Even et al., 1998]
    Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)MathSciNetMATHCrossRefGoogle Scholar
  12. [Goldenberg, 1989]
    Goldenberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading (1989)Google Scholar
  13. [Chan and Krichevsky, 2005]
    Chan, J.A., Krichevsky, A.M., et al.: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033 (2005)CrossRefGoogle Scholar
  14. [Esquela-Kerscher and Slack, 2006]
    Esquela-Kerscher, A., Slack, F.J.: Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006)CrossRefGoogle Scholar
  15. [Bartel, 2004]
    Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. cell 116(2), 281–297 (2004)CrossRefGoogle Scholar
  16. [Kertesz et al., 2007]
    Kertesz, M., Iovino, N., et al.: The role of site accessibility in microRNA target recognition. Nat. Gen. (2007), doi:10.1038/ng2135Google Scholar
  17. [Sethupathy et al., 2006]
    Sethupathy, P., Megraw, M., Hatzigeorgiou, A.G.: A guide through present computational approaches for the identification of mammalian microRNA targets. Nature Methods (2006), doi:10.1038/NMETH954Google Scholar
  18. [Truchon, 1998]
    Truchon, M.: An extension of the Condorcet criterion and Kemeny orders. cahier 98-15 du Centre de Recherche en Economie et Finance Appliquees (1998)Google Scholar
  19. [Young, 1988]
    Young, H.P.: Condorcet’s theory of Voting. Amer. Political Sci. Review 82, 1231–1244 (1988)CrossRefGoogle Scholar
  20. [Young and Levenglick, 1978]
    Young, H.P., Levenglick, A.: A consistent extension of Condorcet’s election principle. SIAM J. on Applied Math. 35(2), 285–300 (1978)MathSciNetMATHCrossRefGoogle Scholar
  21. [Bandyopadhyay and Mitra, 2009]
    Bandyopadhyay, S., Mitra, R.: Targetminer: MicroRNA Target Prediction with Systematic Identification Of Tissue Specific Negative Examples. Bioinformatics (2009), doi:10.1093/bioinformatics/btp503Google Scholar
  22. [Xiao et al., 2009]
    Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., Li, T.: miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 37, D105–D110 (2009)CrossRefGoogle Scholar
  23. [Sengupta et al., 2010]
    Sengupta, D., et al.: A novel measure for evaluating an ordered list: application in microRNA target prediction. In: ISB 2010, India (2010), ISBN:978-1-60558-722-6, http://doi.acm.org/10.1145/1722024.1722067
  24. [Grazia, 1953]
    Grazia, A.D.: Mathematical Derivation of an Election System. Isis 44 (1953)Google Scholar
  25. [Rehmsmeier, 2004]
    Rehmsmeier, M., Steffen, P., Höchsmann, M., Giegerich, R.: Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004)CrossRefGoogle Scholar
  26. [Sengupta et al., 2012]
    Sengupta, D., Maulik, U., Bandyoapdhyay, S.: Weighted Markov Chain Based Aggregation of Bio-molecule Orderings. IEEE-TCBB (2012), doi:10.1109/TCBB.2012.28Google Scholar
  27. [Sengupta and Bandyopadhyay, 2011]
    Sengupta, D., Bandyoapdhyay, S.: Participation of microRNAs in human interactome: extraction of microRNA microRNA regulations. Molecular Biosystems (2011), doi:10.1039/C0MB00347FGoogle Scholar
  28. [Sengupta et al., 2011]
    Sengupta, D., Maulik, U., Bandyoapdhyay, S.: Entropy steered Kendall’s tau measure for a fair Rank Aggregation. NCEATCS (2011), doi:10.1109/NCETACS.2011.5751397Google Scholar
  29. [Chen, 2011]
    Chen, J., Aronow, B.J., Jegga, A.G.: Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics (2009), doi:10.1039/C0MB00347F, doi:10.1186/1471-2105-10-73Google Scholar
  30. [Online material , 2008]
    Rank Aggregation Methods for the Web, www.cs.uc.edu/~annexste/Courses/cs728-2008/Lecture11.ppt

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Debarka Sengupta
    • 1
  • Ujjwal Maulik
    • 2
  • Sanghamitra Bandyopadhyay
    • 1
  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia
  2. 2.Dept. of Comp. Sc. and Eng.Jadavpur UniversityKolkataIndia

Personalised recommendations