On the Comparison of Sets of Alternative Transcripts

  • Aïda Ouangraoua
  • Krister M. Swenson
  • Anne Bergeron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7292)

Abstract

Alternative splicing is pervasive among complex eukaryote species. For some genes shared by numerous species, dozens of alternative transcripts are already annotated in databases. Most recent studies compare and catalog alternate splicing events within or across species, but there is an urgent need to be able to compare sets of whole transcripts both manually and automatically.

In this paper, we propose a general framework to compare sets of transcripts that are transcribed from orthologous loci of several species. The model is based on the construction of a common reference sequence, and on annotations that allow the reconstruction of ancestral sequences, the identification of conserved events, and the inference of gains and losses of donor/acceptors sites, exons, introns and transcripts.

Our representation of sets of transcripts is straightforward, and readable by both humans and computers. On the other hand, the model has a precise, formal specification that insures its coherence, consistency and scalability. We give several examples, among them a comparison of 24 Smox gene transcripts across five species.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bollina, D., Lee, B.T., Tan, T.W., Ranganathan, S.: ASGS: an alternative splicing graph web service. Nucleic Acids Res. 34, W444–W447 (2006)CrossRefGoogle Scholar
  2. 2.
    Bonizzoni, P., Mauri, G., Pesole, G., Picardi, E., Pirola, Y., Rizzi, R.: Detecting alternative gene structures from spliced ESTs: a computational approach. J. Comput. Biol. 16, 43–66 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Carninci, P., Kasukawa, T., Katayama, S., et al.: The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005)CrossRefGoogle Scholar
  4. 4.
    Christinat, Y., Moret, B.M.E.: Inferring transcript phylogenies. In: Proc. of IEEE International Conference on Bioinformatics and Biomedecine, pp. 208–215 (2011)Google Scholar
  5. 5.
    The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the encode pilot project. Nature  447, 799–816 (2007)Google Scholar
  6. 6.
    Fitch, W.M.: Toward defining the course of evolution: minimum change for a specified tree topology. Systematic Zoology 20(4), 406–416 (1971)CrossRefGoogle Scholar
  7. 7.
    Flicek, P., Amode, M.R., Barrell, D., et al.: Ensembl 2011. Nucleic Acids Res. 39, D800–D806 (2011)CrossRefGoogle Scholar
  8. 8.
    Heber, S., Alekseyev, M., Sze, S.H., Tang, H., Pevzner, P.A.: Splicing graphs and EST assembly problem. Bioinformatics 18(suppl.1), S181–S188 (2002)CrossRefGoogle Scholar
  9. 9.
    Lacroix, V., Sammeth, M., Guigo, R., Bergeron, A.: Exact Transcriptome Reconstruction from Short Sequence Reads. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 50–63. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, A., Wilm, I.M., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G.: Clustal w and clustal x version 2.0. Bioinformatics 23, 2947–2948 (2007)CrossRefGoogle Scholar
  11. 11.
    Mendell, J.T., Sharifi, N.A., Meyers, J.L., Martinez-Murillo, F., Dietz, H.C.: Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nature Genetics 36, 1073–1078 (2004)CrossRefGoogle Scholar
  12. 12.
    Mudge, J.M., Frankish, A., Fernandez-Banet, J., Alioto, T., Derrien, T., Howald, C., Reymond, A., Guigo, R., Hubbard, T., Harrow, J.: The origins, evolution and functional potential of alternative splicing in vertebrates. Molecular Biology and Evolution 28, 2949–2959 (2011)CrossRefGoogle Scholar
  13. 13.
    Nagasaki, H., Arita, M., Nishizawa, T., Suwa, M., Gotoh, O.: Automated classification of alternative splicing and transcriptional initiation and construction of visual database of classified patterns. Bioinformatics 22(10), 1211–1216 (2006)CrossRefGoogle Scholar
  14. 14.
    Pavesi, G., Zambelli, F., Caggese, C., Pesole, G.: Exalign: a new method for comparative analysis of exon-intron gene structures. Nucleic Acids Res. 36, e47 (2008)CrossRefGoogle Scholar
  15. 15.
    Pruitt, K.D., Harrow, J., Harte, R.A., et al.: The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Res. 19, 1316–1323 (2009)CrossRefGoogle Scholar
  16. 16.
    Sammeth, M., Foissac, S., Guigo, R.: A general definition and nomenclature for alternative splicing events. PLoS Computational Biology 8, e1000147 (2008)CrossRefGoogle Scholar
  17. 17.
    Sammeth, M., Valiente, G., Guigo, R.: Bubbles: Alternative Splicing Events of Arbitrary Dimension in Splicing Graphs. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 372–395. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Zambelli, F., Pavesi, G., Gissi, C., Horner, D.S., Pesole, G.: Assessment of orthologous splicing isoforms in human and mouse orthologous genes. BMC Genomics 11, 534 (2010)CrossRefGoogle Scholar
  19. 19.
    Zavolan, M., van Nimwegen, E.: The types and prevalence of alternative splice forms. Curr. Opin. Struct. Biol. 16, 362–367 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aïda Ouangraoua
    • 1
  • Krister M. Swenson
    • 2
  • Anne Bergeron
    • 3
  1. 1.INRIA Lille, LIFLUniversité Lille 1France
  2. 2.Université de Montréal and McGill UniversityCanada
  3. 3.LacimUniversité du Québec à MontréalMontréalCanada

Personalised recommendations