On Optimizing the Non-metric Similarity Search in Tandem Mass Spectra by Clustering

  • Jiří Novák
  • David Hoksza
  • Jakub Lokoč
  • Tomáš Skopal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7292)

Abstract

Tandem mass spectrometry is a well-known technique for identification of protein sequences from an ”in vitro” sample. To identify the sequences from spectra captured by a spectrometer, the similarity search in a database of hypothetical mass spectra is often used. For this purpose, a database of known protein sequences is utilized to generate the hypothetical spectra. Since the number of sequences in the databases grows rapidly over the time, several approaches have been proposed to index the databases of mass spectra. In this paper, we improve an approach based on the non-metric similarity search where the M-tree and the TriGen algorithm are employed for fast and approximative search. We show that preprocessing of mass spectra by clustering speeds up the identification of sequences more than 100× with respect to the sequential scan of the entire database. Moreover, when the protein candidates are refined by sequential scan in the postprocessing step, the whole approach exhibits precision similar to that of sequential scan over the entire database (over 90%).

Keywords

Tandem mass spectrometry similarity search non-metric access methods protein sequences identification spectral clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alfassi, Z.B.: On the Normalization of a Mass Spectrum for Comparison of Two Spectra. Journal of the Am. Soc. for Mass Spec. 15(3), 385–387 (2004)CrossRefGoogle Scholar
  2. 2.
    Beer, I., Barnea, E., Ziv, T., Admon, A.: Improving large-scale proteomics by clustering of mass spectrometry data. Proteomics 4, 950–960 (2004)CrossRefGoogle Scholar
  3. 3.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. In: VLDB, pp. 426–435 (1997)Google Scholar
  4. 4.
    Dutta, D., Chen, T.: Speeding up Tandem Mass Spectrometry Database Search: Metric Embeddings and Fast Near Neighbor Search. Bioinf. 23(5), 612–618 (2007)CrossRefGoogle Scholar
  5. 5.
    Falkner, J.A., Falkner, J.W., Yocum, A.K., Andrews, P.C.: A spectral clustering approach to MS/MS identification of post-translational modifications. Journal of Proteome Research 7(11), 4614–4622 (2008)CrossRefGoogle Scholar
  6. 6.
    Flikka, K., et al.: Improving the reliability and throughput of mass spectrometry-based proteomics by spectrum quality filtering. Proteomics 6, 2086–2094 (2006)CrossRefGoogle Scholar
  7. 7.
    Flikka, K., et al.: Implementation and application of a versatile clustering tool for tandem mass spectrometry data. Proteomics 7, 3245–3258 (2007)CrossRefGoogle Scholar
  8. 8.
    Frank, A.M., et al.: Clustering millions of tandem mass spectra. Journal of Proteome Research 7(1), 113–122 (2008)CrossRefGoogle Scholar
  9. 9.
    Hinneburg, A., Keim, D.A.: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In: Proc. of KDD 1998, pp. 58–65 (1998)Google Scholar
  10. 10.
    Keller, A., et al.: Experimental Protein Mixture for Validating Tandem Mass Spectral Analysis. OMICS: A Journal of Integrative Biology 6(2), 207–212 (2002)CrossRefGoogle Scholar
  11. 11.
    Li, Y., et al.: Speeding up tandem mass spectrometry based database searching by peptide and spectrum indexing. Rapid Comm. Mass Spec. 24(6), 807–814 (2010)CrossRefGoogle Scholar
  12. 12.
    Liu, J., et al.: Methods for peptide identification by spectral comparison. Proteome Science 5(3) (2007)Google Scholar
  13. 13.
    Lu, B., Chen, T.: A Suffix Tree Approach to the Interpretation of Tandem Mass Spectra: Applications to Peptides of Non-specific Digestion and Post-translational Modifications. Bioinformatics 19(suppl.2), ii113–ii121 (2003)Google Scholar
  14. 14.
    Mao, R., Ramakrishnan, S.R., Nuckolls, G., Miranker, D.P.: An inverted index for mass spectra similarity query and comparison with a metric-space method: case study. In: SISAP 2010, pp. 93–99 (2010)Google Scholar
  15. 15.
  16. 16.
    Nesvizhskii, A.I.: A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. Journal of Proteomics 73(11), 2092–2123 (2010)CrossRefGoogle Scholar
  17. 17.
    Nesvizhskii, A.I., et al.: Dynamic Spectrum Quality Assessment and Iterative Computational Analysis of Shotgun Proteomic Data. Molecular & Cellular Proteomics 5, 652–670 (2006)CrossRefGoogle Scholar
  18. 18.
    Novák, J., Hoksza, D.: Parametrised Hausdorff Distance as a Non-Metric Similarity Model for Tandem Mass Spectrometry. In: CEUR Proc. DATESO, pp. 1–12 (2010)Google Scholar
  19. 19.
    Novák, J., Skopal, T., Hoksza, D., Lokoč, J.: Non-metric Similarity Search of Tandem Mass Spectra Including Posttranslational Modifications. Journal of Discrete Algorithms (2011), http://dx.doi.org/10.1016/j.jda.2011.10.003
  20. 20.
    Park, C.Y., et al.: Rapid and accurate peptide identification from tandem mass spectra. Journal of Proteome research 7(7), 3022–3027 (2008)CrossRefGoogle Scholar
  21. 21.
    Pevzner, P.A., Mulyukov, Z., Dančík, V., Tang, C.L.: Efficiency of Database Search for Identification of Mutated and Modified Proteins via Mass Spectrometry. Genome Research 11(2), 290–299 (2001)CrossRefGoogle Scholar
  22. 22.
    Ramakrishnan, S.R., et al.: A Fast Coarse Filtering Method for Peptide Identification by Mass Spectrometry. Bioinformatics 22(12), 1524–1531 (2006)CrossRefGoogle Scholar
  23. 23.
    Renard, B.Y., et al.: When less can yield more - Computational preprocessing of MS/MS spectra for peptide identification. Proteomics 9, 4978–4984 (2009)CrossRefGoogle Scholar
  24. 24.
    Sadygov, R.G., et al.: Large-scale Database Searching Using Tandem Mass Spectra: Looking up the Answer in the Back of the Book. Nature Met. 1(3), 195–202 (2004)CrossRefGoogle Scholar
  25. 25.
    Salmi, J., Nyman, T.A., Nevalainen, O.S., Aittokallio, T.: Filtering strategies for improving protein identification in high-throughput MS/MS studies. Proteomics 9, 848–860 (2009)CrossRefGoogle Scholar
  26. 26.
    Skopal, T.: Unified Framework for Fast Exact and Approximate Search in Dissimilarity Spaces. ACM Transactions on Database Systems 32(4), 29 (2007)CrossRefGoogle Scholar
  27. 27.
    Skopal, T., Lokoč, J.: NM-Tree: Flexible Approximate Similarity Search in Metric and Non-metric Spaces. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 312–325. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Tabb, D.L., et al.: Similarity among Tandem Mass Spectra from Proteomic Experiments: Detection, Significance and Utility. Anal. Chem. 75(10) (2003)Google Scholar
  29. 29.
    Wang, J., et al.: Peptide identification from mixture tandem mass spectra. Molecular & Cellular Proteomics 9(7), 1476–1485 (2010)CrossRefGoogle Scholar
  30. 30.
    Xu, R., Wunsch, D.: Survey of Clustering Algorithms. IEEE Transactions on neural networks 16(3), 645–678 (2005)CrossRefGoogle Scholar
  31. 31.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems. Springer, USA (2006)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jiří Novák
    • 1
  • David Hoksza
    • 1
  • Jakub Lokoč
    • 1
  • Tomáš Skopal
    • 1
  1. 1.Siret Research Group, Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic

Personalised recommendations