How Good are Chemistry-Climate Models?

  • Veronika Eyring
  • Pierre Friedlingstein
  • Heidi Huntrieser
  • Theodore G. Shepherd
  • Darryn W. Waugh
Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

Chemistry-climate models (CCMs) are important tools for simulating stratospheric ozone changes that arise from changes in ozone-depleting substances and greenhouse gases. Interest in providing reliable future projections of stratospheric ozone and its impact on climate has created a need to address how well the related key processes are represented in CCMs. The Chemistry-Climate Model Validation (CCMVal) activity is a response to this need. Here, the key processes and observations identified by CCMVal are reviewed. Results are presented to demonstrate the importance of a process-oriented and quantitative global model evaluation. In the future, similar evaluation strategies will be needed for Earth system models.

Keywords

Stratospheric Ozone Polar Vortex Lower Stratosphere Earth System Model Polar Stratospheric Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bony, S., Colman, R., Kattsov, V.M., Allan, R.P., Bretherton, C.S., Dufresne, J.L., Hall, A., Hallegatte, S., Holland, M.M., Ingram, W., et al.: How well do we understand and evaluate climate change feedback processes? J. Clim. 19, 3445–3482 (2006)ADSCrossRefGoogle Scholar
  2. Cadule, P., Friedlingstein, P., Bopp, L., Sitch, S., Jones, C.D., Ciais, P., Piao, S.L., Peylin, P.: Benchmarking coupled climate-carbon models against long-term atmospheric CO(2) measurements. Global Biogeochem. Cycles 24, Gb2016 (2010). doi: 10.1029/2009gb003556
  3. Curry, J.A.: Climate science and the uncertainty monster. Abstr, Pap. Amer. Chem. S (2011). 242Google Scholar
  4. Emmons, L.K., Hauglustaine, D.A., Muller, J.F., Carroll, M.A., Brasseur, G.P., Brunner, D., Staehelin, J., Thouret, V., Marenco, A.: Data composites of airborne observations of tropospheric ozone and its precursors. J. Geophys. Res. 105, 20497–20538 (2000)ADSCrossRefGoogle Scholar
  5. Eyring, V., Harris, N.R.P., Rex, M., Shepherd, T.G., Fahey, D.W., Amanatidis, G.T., Austin, J., Chipperfield, M.P., Dameris, M., Forster, P.M.F. et al.: A strategy for process-oriented validation of coupled chemistry-climate models. Bull. Am. Meteorol. Soc. 86, 1117–1133 (2005). doi: 10.1175/Bams-86-8-1117 Google Scholar
  6. Eyring, V., Butchart, N., Waugh, D.W., Akiyoshi, H., Austin, J., Bekki, S., Bodeker, G.E., Boville, B.A., Bruhl, C., Chipperfield, M.P., et al.: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res. 111, D22308 (2006). doi: 10.1029/2006jd007327 ADSCrossRefGoogle Scholar
  7. Eyring, V., Waugh, D.W., Bodeker, G.E., Cordero, E., Akiyoshi, H., Austin, J., Beagley, S.R., Boville, B.A., Braesicke, P., Bruhl, C., et al.: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res. 112, D16303 (2007). doi: 10.1029/2006jd008332 ADSCrossRefGoogle Scholar
  8. Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., et al.: Climate-carbon cycle feedback analysis: results from the C(4)MIP model intercomparison. J. Clim. 19, 3337–3353 (2006)ADSCrossRefGoogle Scholar
  9. Huntrieser, H., Schlager, H., Lichtenstern, M., Stock, P., Hamburger, T., Holler, H., Schmidt, K., Betz, H.D., Ulanovsky, A., Ravegnani, F.: Mesoscale convective systems observed during AMMA and their impact on the NOx and O3 budget over West Africa. Atmos. Chem. Phys. 11, 2503–2536 (2011). doi: 10.5194/acp-11-2503-2011 ADSCrossRefGoogle Scholar
  10. IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds.) C. U. Press, Cambridge (2007)Google Scholar
  11. Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., Kern, B.: Development cycle 2 of the Modular Earth Submodel System (MESSy2). Geosci. Model Dev. 3, 717–752 (2010). doi: 10.5194/gmd-3-717-2010 ADSCrossRefGoogle Scholar
  12. Knutti, R., Abramowitz, G., Collins, M., Eyring, V., Gleckler, P.J., Hewitson, B. Mearns, L.: Good Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections. Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Assessing and Combining Multi Model Climate Projections. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Midgley, P.M. (eds.) IPCC Working Group I Technical Support Unit, University of Bern, Bern (2010a)Google Scholar
  13. Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., Meehl, G.A.: Challenges in combining projections from multiple climate models. J. Clim. 23, 2739–2758 (2010b). doi: 10.1175/2009jcli3361.1 ADSCrossRefGoogle Scholar
  14. Kurz, C.: Entwicklung und Anwendung eines gekoppelten Klima-Chemie-Modellsystems, Ludwig-Maximilians-Universität München, pp. 142 (2006)Google Scholar
  15. Meijer, E.W., van Velthoven, P.F.J., Brunner, D.W., Huntrieser, H., Kelder, H.: Improvement and evaluation of the parameterisation of nitrogen oxide production by lightning. Phys. Chem. Earth. C 26, 577–583 (2001)CrossRefGoogle Scholar
  16. Pozzer, A., Jöckel, P., Kern, B., Haak, H.: The atmosphere-ocean general circulation model EMAC-MPIOM. Geosci. Model Dev. 4, 771–784 (2011). doi: 10.5194/gmd-4-771-2011 ADSCrossRefGoogle Scholar
  17. Randerson, J.T., Hoffman, F.M., Thornton, P.E., Mahowald, N.M., Lindsay, K., Lee, Y.H., Nevison, C.D., Doney, S.C., Bonan, G., Stockli, R., et al.: Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Glob. Change Biol. 15, 2462–2484 (2009). doi: 10.1111/j.1365-2486.2009.01912.x CrossRefGoogle Scholar
  18. SPARC-CCMVal: SPARC Report on the Evaluation of Chemistry-Climate Models.In: Eyring, V., Shepherd, T.G., Waugh, D.W. (eds.) SPARC Report No. 5, WCRP-132, WMO/TD-No. 1526. http://www.atmosp.physics.utoronto.ca/SPARC (2010)
  19. Tebaldi, C., Arblaster, J.M., Knutti, R.: Mapping model agreement on future climate projections. Geophys. Res. Lett. 38, L23701 (2011). doi: 10.1029/2011gl049863 ADSCrossRefGoogle Scholar
  20. Waugh, D.W., Eyring, V.: Quantitative performance metrics for stratospheric-resolving chemistry-climate models. Atmos. Chem. Phys. 8, 5699–5713 (2008)ADSCrossRefGoogle Scholar
  21. WMO: Scientific Assessment of Ozone Depletion: 2006, World Meteorological Organization, Global Ozone Research and Monitoring Project, Geneva, 50, pp. 572 (2007)Google Scholar
  22. WMO: Scientific Assessment of Ozone Depletion: 2010, World Meteorological Organization, Global Ozone Research and Monitoring Project Geneva, Switzerland, 52, pp. 516 (2011)Google Scholar
  23. Zaehle, S., Friedlingstein, P., Friend, A.D.: Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys. Res. Lett. 37, L01401 (2010). doi: 10.1029/2009gl041345 CrossRefGoogle Scholar
  24. Ziereis, H., Schlager, H., Schulte, P., Kohler, I., Marquardt, R., Feigl, C.: In situ measurements of the NOx distribution and variability over the eastern North Atlantic. J. Geophys. Res. 104, 16021–16032 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Veronika Eyring
    • 1
  • Pierre Friedlingstein
    • 2
  • Heidi Huntrieser
    • 1
  • Theodore G. Shepherd
    • 3
  • Darryn W. Waugh
    • 4
  1. 1.DLR, Institute of Atmospheric Physics (IPA)OberpfaffenhofenGermany
  2. 2.University of ExeterExeterUK
  3. 3.Department of PhysicsUniversity of TorontoTorontoCanada
  4. 4.Department of Earth and Planetary SciencesJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations