Earth System Modeling

Part of the Research Topics in Aerospace book series (RTA)


Earth system models are important research tools for improving understanding of the climate system and for simulating climate projections. This chapter is devoted to the basic construction principles and challenges of such models, whereas application examples are provided in companion chapters. Since they still do not incorporate the full complexity of the real climate system (and maybe never will), Earth system models nowadays typically focus on specific aspects, for instance on the role of chemically active substances in the climate system.


Earth System Model Program Unit Model Infrastructure Time Step Length Stratospheric Ozone Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Charney, J.G., Fjörtoft, R., von Neumann, J.: Numerical integration of the barotropic vorticity equation. Tellus 2, 237–254 (1950)MathSciNetADSCrossRefGoogle Scholar
  2. Deckert, R., Jöckel, P., Grewe, V., Gottschaldt, K.-D., Hoor, P.: A quasi chemistry-transport model mode for EMAC. Geosci. Model Dev. 4, 195–206 (2011). doi: 10.5194/gmd-4-195-2011
  3. Hofmann, C., Kerkweg, A., Wernli, H., Jöckel, P.: The 1-way on-line coupled atmospheric chemistry model system MECO(n) Part 3: Meteorological evaluation of the on-line coupled system. Geosci. Model Dev. 5, 129–147 (2012). doi: 10.5194/gmd-5-129-2012 ADSCrossRefGoogle Scholar
  4. Jöckel, P., von Kuhlmann, R., Lawrence, M.G., Steil, B., Brenninkmeijer, C.A.M., Crutzen, P.J., Rasch, P.J., Eaton, B.: On a fundamental problem in implementing flux-form advection schemes for tracer transport in 3-dimensional general circulation and chemistry transport models. Q. J. Roy. Meteor. Soc. 127, 1035–1052 (2001)ADSGoogle Scholar
  5. Jöckel, P., Sander, R., Kerkweg, A., Tost, H., Lelieveld, J.: Technical note: the modular Earth submodel system (MESSy)––a new approach towards Earth system modeling. Atmos. Chem. Phys. 5, 433–444 (2005). doi: 10.5194/acp-5-433-2005 ADSCrossRefGoogle Scholar
  6. Jöckel, P., Tost, H., Pozzer, A., Brühl, C., Buchholz, J., Ganzeveld, L., Hoor, P., Kerkweg, A., Lawrence, M., Sander, R., et al.: The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. Atmos. Chem. Phys. 6, 5067–5104 (2006). doi: 10.5194/acp-6-5067-2006 ADSCrossRefGoogle Scholar
  7. Jöckel, P., Kerkweg, A., Buchholz-Dietsch, J., Tost, H., Sander, R., Pozzer, A.: Technical note: coupling of chemical processes with the modular Earth submodel system (MESSy) submodel TRACER. Atmos. Chem. Phys. 8, 1677–1687 (2008). doi: 10.5194/acp-8-1677-2008 ADSCrossRefGoogle Scholar
  8. Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., Kern, B.: Development cycle 2 of the modular Earth submodel system (MESSy2). Geosci. Model Dev. 3, 717–752 (2010). doi: 10.5194/gmd-3-717-2010 ADSCrossRefGoogle Scholar
  9. Kerkweg, A., Jöckel, P.: The 1-way on-line coupled atmospheric chemistry model system MECO(n) Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy. Geosci. Model Dev. 5, 87–110 (2012a). doi: 10.5194/gmd-5-87-2012 ADSCrossRefGoogle Scholar
  10. Kerkweg, A., Jöckel, P.: The 1-way on-line coupled atmospheric chemistry model system MECO(n) Part 2: on-line coupling with the Multi-Model-Driver (MMD). Geosci. Model Dev. 5, 111–128 (2012b). doi: 10.5194/gmd-5-111-2012 ADSCrossRefGoogle Scholar
  11. Lynch, P., Lynch, O.: Forecasts by PHONIAC. Weather 63, 324–326 (2008)ADSCrossRefGoogle Scholar
  12. Pozzer, A., Jöckel, P., Kern, B., Haak, H.: The atmosphere–ocean general circulation model EMAC-MPIOM. Geosci. Model Dev. 4, 771–784 (2011). doi: 10.5194/gmd-4-771-2011 ADSCrossRefGoogle Scholar
  13. Reithmeier, C., Sausen, R.: ATTILA—atmospheric tracer transport in a Lagrangian model. Tellus B 54(3), 278–299 (2002)ADSCrossRefGoogle Scholar
  14. Stenke, A., Grewe, V., Ponater, M.: Lagrangian transport of water vapor and cloud water in the ECHAM4 GCM and its impact on the cold bias. Clim. Dyn. 31, 491–506 (2008). doi: 10.1007/s00382-007-0347-5 CrossRefGoogle Scholar
  15. Stenke, A., Dameris, M., Grewe, V., Garny, H.: Implications of Lagrangian transport for simulations with a coupled chemistry-climate model. Atmos. Chem. Phys. 9, 5489–5504 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.DLR, Institute of Atmospheric Physics (IPA)OberpfaffenhofenGermany

Personalised recommendations