Global Atmospheric Aerosol Modeling

  • Johannes Hendricks
  • Mattia Righi
  • Valentina Aquila
Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

Keywords

Aerosol Particle Atmospheric Aerosol Cloud Droplet Mineral Dust Particle Number Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aquila, V., Hendricks, J., Lauer, A., Riemer, N., Vogel, H., Baumgardner, D., Minikin, A., Petzold, A., Schwarz, J.P., Spackman, J.R., et al.: MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state. Geosci. Model Dev. 4, 325–355 (2011). doi: 10.5194/gmd-4-325-2011 ADSCrossRefGoogle Scholar
  2. Ghan, J.S., Schwartz, E.S.: Aerosol properties and processes—a path from field and laboratory measurements to global climate models. Bull. Am. Meteor. Soc. 88, 1059–1083 (2007)ADSCrossRefGoogle Scholar
  3. Hendricks, J., Kärcher, B., Döpelheuer, A., Feichter, J., Lohmann, U., Baumgardner, D.: Simulating the global atmospheric black carbon cycle: a revisit to the contribution of aircraft emissions. Atmos. Chem. Phys. 4, 2521–2541 (2004)ADSCrossRefGoogle Scholar
  4. Hendricks, J., Kärcher, B., Lohmann, U., Ponater, M.: Do aircraft black carbon emissions affect cirrus clouds on the global scale? Geophys. Res. Lett. 32, L12814 (2005). doi: 10.1029/2005GL022740 ADSCrossRefGoogle Scholar
  5. Hendricks, J., Kärcher, B., Lohmann, U.: Effects of ice nuclei on cirrus clouds in a global climate model. J. Geophys. Res. 116(D18206), 1–24 (2011). doi: 10.1029/2010JD015302 Google Scholar
  6. Jöckel, P., Sander, R., Kerkweg, A., Tost, H., Lelieveld, J.: Technical note: the modular earth submodel system (MESSy)—a new approach towards earth system modeling. Atmos. Chem. Phys. 5, 433–444 (2005). doi: 10.5194/acp-5-433-2005 ADSCrossRefGoogle Scholar
  7. Jöckel, P., Tost, H., Pozzer, A., Brühl, C., Buchholz, J., Ganzeveld, L., Hoor, P., Kerkweg, A., Lawrence, M.G., Sander, R., et al.: The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. Atmos. Chem. Phys. 6, 5067–5104 (2006). doi: 10.5194/acp-6-5067-2006 ADSCrossRefGoogle Scholar
  8. Kärcher, B., Hendricks, J., Lohmann, U.: Physically based parameterization of cirrus cloud formation for use in global atmospheric models. J. Geophys. Res. 111, D01205 (2006). doi: 10.1029/2005JD006219 ADSCrossRefGoogle Scholar
  9. Köhler, I., Dameris, M., Ackermann, I., Hass, H.: Contribution of road traffic emissions to the atmospheric black carbon burden in the mid-1990s. J. Geophys. Res. 106, 17997–18014 (2001)ADSCrossRefGoogle Scholar
  10. Lauer, A., Hendricks, J., Ackermann, I., Schell, B., Hass, H., Metzger, S.: Simulating aerosol microphysics with the ECHAM/MADE GCM—Part I: model description and comparison with observations. Atmos. Chem. Phys. 5, 3251–3276 (2005). doi: 10.5194/acp-5-3251-2005 ADSCrossRefGoogle Scholar
  11. Lauer, A., Hendricks, J.: Simulating aerosol microphysics with the ECHAM4/MADE GCM—Part II: Results from a first multiannual simulation of the submicrometer aerosol. Atmos. Chem. Phys. 6, 5495–5513 (2006). doi: 10.5194/acp-6-5495-2006 ADSCrossRefGoogle Scholar
  12. Lauer, A., Eyring, V., Hendricks, J., Jöckel, P., Lohmann, U.: Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget. Atmos. Chem. Phys. 7, 5061–5079 (2007). doi: 10.5194/acp-7-5061-2007 ADSCrossRefGoogle Scholar
  13. Petzold, A., Fiebig, M., Flentje, H., Keil, A., Leiterer, U., Schröder, F., Stifter, A., Wendisch, M., Wendling, P.: Vertical variability of aerosol properties observed at a continental site during the Lindenberg aerosol characterization experiment (LACE 98). J. Geophys. Res. 107, 8128 (2002). doi: 10.1029/2001JD001043 CrossRefGoogle Scholar
  14. Righi, M., Klinger, K., Eyring, V., Hendricks, J., Lauer, A., Petzold, A.: Climate impact of biofuels in shipping: global model studies of the aerosol indirect effect. Environ. Sci. Technol. 45, 3519–3525 (2011). doi:dx.doi.org/10.1021/es1036157 CrossRefGoogle Scholar
  15. Whitby, E., McMurry, P.: Modal aerosol dynamics modelling. Aerosol. Sci. Techol. 27, 673–688 (1997)CrossRefGoogle Scholar
  16. Whitby, K.T.: The physical characteristics of sulfur aerosols. Atmos. Environ. 12, 135–159 (1978)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Johannes Hendricks
    • 1
  • Mattia Righi
    • 1
  • Valentina Aquila
    • 2
  1. 1.DLR, Institute of Atmospheric Physics (IPA)OberpfaffenhofenGermany
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations