Aerosol Classification by Advanced Backscatter Lidar Techniques

Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

The high spectral resolution lidar (HSRL) method based on an iodine absorption filter and a frequency doubled pulsed Nd:YAG laser is presented. This method has the capability to directly measure the extinction and backscatter coefficients of aerosols and clouds. Measurements of an airborne HSRL system from four different field experiments are used to build up an aerosol classification. Two examples show the potential of this aerosol classification to distinguish between different aerosol types.

Keywords

Aerosol Optical Depth Mineral Dust Saharan Dust Aerosol Layer Backscatter Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Esselborn, M., Wirth, M., Fix, A., Tesche, M., Ehret, G.: Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients. Appl. Opt. 47, 346–358 (2008). doi: 10.1364/AO.47.000346 ADSCrossRefGoogle Scholar
  2. Esselborn, M., Wirth, M., Fix, A., Weinzierl, B., Rasp, K., Tesche, M., Petzold, A.: Spatial distribution and optical properties of saharan dust observed by airborne high spectral resolution lidar during samum 2006. Tellus B 61, 131–143 (2009). doi: 10.1111/j.1600-0889.2008.00394.x ADSCrossRefGoogle Scholar
  3. Fiocco, G., Dewolf, J.B.: Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air. J. Atmos. Sci. 25(3), 488–496 (1968). doi: 10.1175/1520-0469(1968)025<0488:FSOLEF>2.0.CO;2 ADSCrossRefGoogle Scholar
  4. Groß, S., Tesche, M., Freudenthaler, V., Toledano, C., Wiegner, M., Ansmann, A., Althausen, D., Seefeldner, M.: Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2. Tellus B 63, 706–724 (2011). doi: 10.1111/j.1600-0889.2011.00556.x ADSCrossRefGoogle Scholar
  5. Heintzenberg, J.: The SAMUM-1 experiment over Southern Morocco: overview and introduction. Tellus B 61, 2–11 (2009). doi: 10.1111/j.1600-0889.2008.00403.x ADSCrossRefGoogle Scholar
  6. Piironen, P., Eloranta, E.W.: Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter. Opt. Lett. 19, 234–236 (1994). doi: 10.1364/OL.19.000234 ADSCrossRefGoogle Scholar
  7. Wandinger, U., et al.: Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements. J. Geophys. Res. 107(D21), 8125 (2002), doi:  10.1029/2000JD000202
  8. Weinzierl, B., et al.: Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Capverde region—an overview of the airborne in situ and lidar measurements during SAMUM-2. Tellus B 63(4), 589–618 (2011)Google Scholar
  9. Winker, D.M., Hunt, W.H., McGill, M.J.: Initial performance assessment of CALIOP. Geophys. Res. Lett. 34, L19803 (2007). doi: 10.1029/2007GL030135 ADSCrossRefGoogle Scholar
  10. Wirth, M., Fix, A., Mahnke, P., Schwarzer, H., Schrandt, F., Ehret, G.: The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance. Appl. Phys. B 96, 201–213 (2009). doi: 10.1007/s00340-009-3365-7 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.DLR, Institute of Atmospheric Physics (IPA)OberpfaffenhofenGermany
  2. 2.European Southern Observatory, Technology DivisionGarchingGermany

Personalised recommendations