Lightning Detection

  • Hartmut Höller
  • Hans-Dieter Betz
  • Ullrich Finke
  • Kersten Schmidt
Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

Thunderstorm electrification is mainly due to ice particle interaction processes leading to a typical main dipole structure. Intra-cloud and cloud-to-ground discharges can be detected at low and very low radio frequencies by the lightning detection network LINET. At high radio-frequencies one can detect the step-like flash structure. The optical emissions can be observed from space. The operational LINET network over Europe and networks deployed during field experiments enabled a comparison of lightning characteristics from mid-latitudes and the tropics. Important applications are nowcasting and operational weather forecasting, climate research, and the planning and support of new satellite lightning observing systems.

Keywords

Tropical Rainfall Measure Mission Return Stroke Lightning Detection Tropical Rainfall Measure Mission Microwave Imager Lightning Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Betz, H.-D., Schmidt, K., Oettinger, P., Wirz, M.: Lightning detection with 3-D discrimination of intracloud and cloud-to-ground discharges. Geophys. Res. Lett. 31, L11108 (2004). doi: 10.1029/2004GL019821 ADSCrossRefGoogle Scholar
  2. Betz, H.-D., Schmidt, K., Laroche, P., Blanchet, P., Oettinger, W.P., Defer, E., Dziewit, Z., Konarski, J.: LINET—an international lightning detection network in Europe. Atmos. Res. 91, 564–573 (2009a). doi: 10.1016/j.atmosres.2008.06.012 CrossRefGoogle Scholar
  3. Betz, H.-D., Schumann, U., Laroche, P. (eds.): Lightning: Principles, Instruments and Applications, 641 pp. Springer, New York (2009b)Google Scholar
  4. Betz, H.-D., Schmidt, K., Fuchs, B., Oettinger, W.P., Höller, H.: Cloud Lightning: detection and utilization for total lightning measured in the VLF/LF regime. J. Lightning Res. 2, 1–17 (2007)Google Scholar
  5. Dahl, J.M.L., Höller, H., Schumann, U.: Modeling the flash rate of thunderstorms. Part I: framework. Mon. Weather Rev. 139, 3093–3111 (2011a). doi: 10.1175/MWR-D-10-05031.1 ADSCrossRefGoogle Scholar
  6. Dahl, J.M.L., Höller, H., Schumann, U.: Modeling the flash rate of thunderstorms. Part II: implementation. Mon. Weather Rev. 139, 3112–3124 (2011b). doi: 10.1175/MWR-D-10-05032.1 ADSCrossRefGoogle Scholar
  7. Höller, H., Betz, H.-D., Schmidt, K., Calheiros, R.V., May, P., Houngninou, E., Scialom, G.: Lightning characteristics observed by a VLF/LF lightning detection network (LINET) in Brazil, Australia, Africa and Germany. Atmos. Chem. Phys. 9, 7795–7824 (2009). doi: 10.5194/acp-9-7795-2009 ADSCrossRefGoogle Scholar
  8. Huntrieser, H., Schumann, U., Schlager, H., Höller, H., Giez, A., Betz, H.-D., Brunner, D., Forster, C., Pinto Jr, O., Calheiros, R.: Lightning activity in Brazilian thunderstorms during TROCCINOX: implications for NOx production. Atmos. Chem. Phys. 8, 921–953 (2008). doi: 10.5194/acp-8-921-2008 ADSCrossRefGoogle Scholar
  9. Huntrieser, H., Schlager, H., Lichtenstern, M., Roiger, A., Stock, P., Minikin, A., Höller, H., Schmidt, K., Betz, H.-D., Allen, G., et al.: NOx production by lightning in Hector: first airborne measurements during SCOUT-O3/ACTIVE. Atmos. Chem. Phys. 9, 8377–8412 (2009). doi: 10.5194/acp-9-8377-2009 ADSCrossRefGoogle Scholar
  10. Huntrieser, H., Schlager, H., Lichtenstern, M., Stock, P., Hamburger, T., Höller, H., Schmidt, K., Betz, H.-D., Ulanovsky, A., Ravegnani, F.: Mesoscale convective systems observed during AMMA and their impact on the NOx and O3 budget over West Africa. Atmos. Chem. Phys. 11, 2503–2536 (2011). doi: 10.5194/acp-11-2503-2011 ADSCrossRefGoogle Scholar
  11. Labrador, L., Vaughan, G., Heyes, W., Waddicor, D., Volz-Thomas, A., Pätz, H.-W., Höller, H.: Lightning-produced NOx during the Northern Australian monsoon; results from the ACTIVE campaign. Atmos. Chem. Phys. 9, 7419–7429 (2009). doi: 10.5194/acp-9-7419-2009 ADSCrossRefGoogle Scholar
  12. Meyer, V.: Thunderstorm tracking and monitoring on the basis of three dimensional lightning data and conventional and polarimetric radar data. Dissertation, Faculty of Physics, LMU München (2010)Google Scholar
  13. Rakov, V.A., Uman, M.A.: Lightning, p. 687. Cambridge University Press, New York (2003)Google Scholar
  14. Schmidt, K.: Ortung und Analyse von Blitzentladungen mittels Registrierung von VLF-Atmospherics innerhalb eines Messnetzes. Dissertation, Faculty of Physics, LMU München (2007)Google Scholar
  15. Schumann, U., Huntrieser, H.: The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007). doi: 10.5194/acp-7-3823-2007 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hartmut Höller
    • 1
  • Hans-Dieter Betz
    • 2
  • Ullrich Finke
    • 3
  • Kersten Schmidt
    • 1
  1. 1.DLRInstitute of Atmospheric Physics (IPA)OberpfaffenhofenGermany
  2. 2.Faculty of Physicsnowcast GmbH und Ludwig-Maximilians-universität München (LMU)MünchenGermany
  3. 3.Hochschule HannoverFakultät I - Elektro- und InformationstechnikHannoverGermany

Personalised recommendations