LINDSAY Virtual Human: Multi-scale, Agent-based, and Interactive

  • C. Jacob
  • S. von Mammen
  • T. Davison
  • A. Sarraf-Shirazi
  • V. Sarpe
  • A. Esmaeili
  • D. Phillips
  • I. Yazdanbod
  • S. Novakowski
  • S. Steil
  • C. Gingras
  • H. Jamniczky
  • B. Hallgrimsson
  • B. Wright

Abstract

We are developing LINDSAYVirtualHuman, a 3-dimensional, interactive computer model of male and female anatomy and physiology. LINDSAY is designed to be used for medical education. One key characteristic of LINDSAY is the integration of computational models across a range of spatial and temporal scales. We simulate physiological processes in an integrative fashion: from the body level to the level of organs, tissues, cells, and sub-cellular structures. For use in the classroom, we have built LINDSAYPresenter, a 3D slide-based visualization and exploration environment that presents different scenarios within the simulated human body. We are developing LINDSAYComposer to create complex scenes for demonstration, exploration and investigation of physiological scenarios. At LINDSAYComposer′s core is a graphical programming environment, which facilitates the composition of complex, interactive educational modules around the human body.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Entity systems are the future of MMOG development (September 2007), http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1
  2. 2.
  3. 3.
    Harvard BioVisions (January 2012), http://multimedia.mcb.harvard.edu
  4. 4.
    Ackerman, M.J., Yoo, T., Jenkins, D.: From data to knowledge - the visible human project® continues. In: MEDINFO 2001, pp. 887–890 (2001)Google Scholar
  5. 5.
    Årzén, K., Bicchi, A., Dini, G., Hailes, S., Johanesson, K., Lygeros, J., Tzes, A.: A component-based approach to the design of networked control systems. European Journal of Control 13(2), 261–279 (2007)CrossRefGoogle Scholar
  6. 6.
    Bauer, M., Bruegge, B., Klinker, G., MacWilliams, A., Reicher, T., Riß, S., Sandor, C., Wagner, M.: Design of a component-based augmented reality framework. In: International Symposium on Augmented Reality, Los Alamitos, CA, USA, p. 45 (2001)Google Scholar
  7. 7.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, New York (1999)MATHGoogle Scholar
  8. 8.
    Burleigh, I., Suen, G., Jacob, C.: Dna in action! a 3d swarm-based model of a gene regulatory system. In: First Australian Conference on Artificial Life, ACAL 2003, Canberra, Australia (2003)Google Scholar
  9. 9.
    Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton Studies in Complexity. Princeton University Press, Princeton (2003)MATHGoogle Scholar
  10. 10.
    COLLADA.org. Collada - digital asset and fx exchange schema (April 2010), http://www.collada.org
  11. 11.
    de Lara, E., Wallach, D.S., Zwaenepoel, W.: Puppeteer: Component-based adaptation for mobile computing. In: USENIX Symposium on Internet Technologies and Systems (2000)Google Scholar
  12. 12.
    Heineman, G.T., Councill, W.T.: Component-Based Software Engineering. ACM Press (2001)Google Scholar
  13. 13.
    Hoar, R., Penner, J., Jacob, C.: Transcription and evolution of a virtual bacteria culture. In: IEEE Congress on Evolutionary Computation. IEEE Press, Canberra (2003)Google Scholar
  14. 14.
    Hunter, P.J., Borg, T.K.: Integration from proteins to organs: the physiome project. Nature Reviews: Molecular Cell Biology 4, 237–243 (2003)CrossRefGoogle Scholar
  15. 15.
    Jacob, C., Barbasiewicz, A., Tsui, G.: Swarms and genes: Exploring λ-switch gene regulation through swarm intelligence. In: IEEE Congress on Evolutionary Computation, CEC 2006 (2006)Google Scholar
  16. 16.
    Jacob, C., Burleigh, I.: Biomolecular swarms: An agent-based model of the lactose operon. Natural Computing 3(4), 361–376 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Johnson, S.: Emergence: The Connected Lives of Ants, Brains, Cities, and Software. Scribner, New York (2001)Google Scholar
  18. 18.
    Leavens, G.T., Sitaraman, M. (eds.): Foundations of component-based systems. Cambridge University Press, New York (2000)MATHGoogle Scholar
  19. 19.
    Lewandowski, S.M.: Frameworks for component-based client server computing. ACM Comput. Surv. 30(1), 3–27 (1998)CrossRefGoogle Scholar
  20. 20.
    Mikic-Rakic, M., Malek, S., Medvidovic, N.: Improving availability in large, distributed component-based systems via redeployment. Component Deployment, 83–98 (2005)Google Scholar
  21. 21.
    Mitsuhashi, N., Fujieda, K., Tamura, T., Kawamoto, S., Takagi, T., Okubo, K.: BodyParts 3D: 3D structure database for anatomical concepts. Nucl. Acids Res. (2008), gkn613Google Scholar
  22. 22.
    N. L. of Medicine. National library of medicine: The visible human project (April 2010), http://www.nlm.nih.gov/research/visible/visible_human.html
  23. 23.
    Penner, J., Hoar, R., Jacob, C.: Bacterial chemotaxis in silico. In: First Australian Conference on Artificial Life, ACAL 2003, Canberra, Australia (2003)Google Scholar
  24. 24.
    Pogson, M., Smallwood, R., Qwarnstrom, E., Holcomb, M.: Formal agent-based modelling of intracellular chemical interactions. BioSystems (2006)Google Scholar
  25. 25.
    Roussain, H., Guidec, F.: Cooperative component-based software deployment in wireless ad hoc networks. Component Deployment, 1–16 (2005)Google Scholar
  26. 26.
    Seifert, M.F.: Visible human projects special issue. Clinical Anatomy 19(3), 191–289 (2010)CrossRefGoogle Scholar
  27. 27.
    Sensen, C.W., Soh, J.: CAVEman, An Object-Oriented Model of the Human Body. In: Sensen, C.W., Soh, J. (eds.) Advanced Imaging in Biology and Medicine, vol. II, pp. 289–300. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Stoy, C.: Game Object Component System. In: Game Programming Gems 6, pp. 393–403. Charles River Media (2006)Google Scholar
  29. 29.
    Tietze, D. A.: A Framework for Developing Component-based Co-operative Applications. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany (2000)Google Scholar
  30. 30.
    von Mammen, S., Davison, T., Baghi, H., Jacob, C.: Component-based networking for simulations in medical education. In: MediaWiN 2010: IEEE Workshop on Multimedia Applications Over Wireless Networks, Riccione, Italy. IEEE Computer Society, IEEE Press, Washington (2010)Google Scholar
  31. 31.
    Walker, D.C., Southgate, J.: The virtual cell–a candidate co-ordinator for ’middle-out’ modelling of biological systems. Briefings in Bioinformatics 10(4), 450–461 (2009)CrossRefGoogle Scholar
  32. 32.
    Wilson, K.: Game object structure: Inheritance vs aggregation (July 2002)Google Scholar
  33. 33.
    Wolfram, S.: A new kind of science. Wolfram Media Inc., Champaign (2002)MATHGoogle Scholar
  34. 34.
    Yazdanbod, I., Marcus, S.: An agent-based simulation of blood coagulation processes. The Journal of Undergraduate Research in Alberta 1(1), 13–18 (2010)Google Scholar
  35. 35.
    Zygote Inc. Zygote human anatomy 3d model (April 2010), http://www.zygote.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • C. Jacob
    • 1
  • S. von Mammen
    • 1
  • T. Davison
    • 1
  • A. Sarraf-Shirazi
    • 1
  • V. Sarpe
    • 1
  • A. Esmaeili
    • 1
  • D. Phillips
    • 1
  • I. Yazdanbod
    • 1
  • S. Novakowski
    • 1
  • S. Steil
    • 1
  • C. Gingras
    • 1
  • H. Jamniczky
    • 1
  • B. Hallgrimsson
    • 1
  • B. Wright
    • 1
  1. 1.University of CalgaryCalgaryCanada

Personalised recommendations