An Economics-Inspired Noise Model in Spatial Games with Reputation

Part of the Studies in Computational Intelligence book series (SCI, volume 422)

Abstract

Games are useful mathematical constructs to model real-world problems involving strategic interactions in various contexts such as politics, economics, and biology. Understanding specific conditions that lead to cooperation between self-interested individuals is an important issue in the study of real-world interactions. Although noisy and spatial interactions have been incorporated into models of complex interactions to better reflect those found in the real-world, most past studies consider simple extensions whereby interactions between all individuals are equally noisy. Here, we study a novel economics-inspired noise model based on the notion of psychicdistance that reflects real-world interactions. The psychicnoise that affects interactions between individuals depends on their psychic distance (e.g., cultural difference). Results from extensive computer simulations using a multi-agent system framework to investigate the impact of various constructions of noisy interactions indicate that noise typically has a negative impact on cooperation. However, a certain condition produces results reminiscent of the psychicdistanceparadox, where an increase in the noise level leads to an increase in the level of cooperation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, R.D.: The Biology of Moral Systems. Aldine de Gruyter, New York (1987)Google Scholar
  2. 2.
    Axelrod, R.: Effective choice in the iterated prisoner’s dilemma. J. Confl. Resolut. 24, 3–25 (1980)CrossRefGoogle Scholar
  3. 3.
    Axelrod, R.: More effective choice in the prisoner’s dilemma. J. Confl. Resolut. 24, 379–403 (1980)CrossRefGoogle Scholar
  4. 4.
    Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)Google Scholar
  5. 5.
    Axelrod, R., Dion, D.: The further evolution of cooperation. Science 242(4884), 1385–1390 (1988)CrossRefGoogle Scholar
  6. 6.
    Axelrod, R., Keohane, R.: Achieving cooperation under anarchy: strategies and institutions. World Politics 38(1), 226–254 (1985)CrossRefGoogle Scholar
  7. 7.
    Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science (211), 1390–1396 (1981)Google Scholar
  8. 8.
    Back, T.: Evolutionary Algorithms in Theory and Practice, p. 117. Oxford Univ. Press (1996)Google Scholar
  9. 9.
    Beckerman, W.: Distance and the pattern of inter-european trade. Rev. Econ. Stat. 38(1), 31–40 (1956)CrossRefGoogle Scholar
  10. 10.
    Brandt, H., Sigmund, K.: Indirect reciprocity, image scoring, and moral hazard. Proc. Natl. Academy of Science (USA) 102, 2666–2670 (2005)CrossRefGoogle Scholar
  11. 11.
    Brauchli, K., Killingback, T., Doebeli, M.: Evolution of cooperation in spatially structured populations. J. Theor. Biol. 200, 405–417 (1999)CrossRefGoogle Scholar
  12. 12.
    Brown, S.: The superpowers’ dilemma: can game theory improve the U.S.-Soviet negotiating relationship? Negotiation J. 2(4), 371–384 (1986)CrossRefGoogle Scholar
  13. 13.
    Chellapilla, K., Fogel, D.B.: Evolution, neural networks, games and intelligence. Proc. IEEE 87(9), 1471–1496 (1999)CrossRefGoogle Scholar
  14. 14.
    Chong, S.Y., Humble, J., Kendall, G., Li, J., Yao, X.: The Iterated Prisoners’ Dilemma: 20 Years On, World Scientific Rev., ch. 3, pp. 63–87 (2008)Google Scholar
  15. 15.
    Chong, S.Y., Yao, X.: Behavioral diversity, choices, and noise in the iterated prisoner’s dilemma. IEEE Trans. Evol. Comput. 9(6), 540–551 (2005)CrossRefGoogle Scholar
  16. 16.
    Chong, S.Y., Yao, X.: Self-adapting matrices in repeated interactions. In: IEEE Symp. Comput. Intel. and Games, pp. 103–110 (2006)Google Scholar
  17. 17.
    Chong, S.Y., Xin, Y.: Multiple choices and reputation in multiagent interactions. IEEE Trans. Evol. Comput. 11(6) (2007)Google Scholar
  18. 18.
    Darwen, P.J., Yao, X.: Does extra genetic diversity maintain escalation in a co-evolutionary arms race. Intl. J. Knowledge-Based Intel. Eng. Sys. 4(3), 191–200 (2000)Google Scholar
  19. 19.
    Donninger, C.: Paradoxical effects of social behavior, p. 123. Physica-Verlag, Heidelberg (1986)Google Scholar
  20. 20.
    Eiben, A.E., Aarts, E.H., Van Hee, K.M.: Global convergence on genetic algorithms: an infinite Markov chain analysis. In: Schwefel, H.-P., Manner, R. (eds.) Parallel Problem Solving from Nature, pp. 4–12. Springer, Heidelberg (1991)Google Scholar
  21. 21.
    Flood, M.M.: Some Experimental Games, Research Memorandum RM-789. The RAND Corp., Santa Monica, California (USA) (1952)Google Scholar
  22. 22.
    Fogel, D.B.: Evolving behaviors in the iterated prisoner’s dilemma. Evol. Comput. 1(1), 77–97 (1993)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Trans. Neural Netw. 5(1), 3–14 (1994)CrossRefGoogle Scholar
  24. 24.
    Goldstein, J.: Reciprocity in superpower relations: An empirical analysis. Intl. Stud. Q. 35, 195–209 (1991)CrossRefGoogle Scholar
  25. 25.
    Hosseini, H.: Psychic distance, psychic distance paradox and behavioral economics: modeling MNC entry behavior in foreign markets. J. Socio-Econ. 37, 939–948 (2008)CrossRefGoogle Scholar
  26. 26.
    Ishibuchi, H., Namikawa, N.: Evolution of iterated prisoner’s dilemma game strategies in structured demes under random pairing in game playing. IEEE Transactions on Evolutionary Computation 9(6), 552–561 (2005)CrossRefGoogle Scholar
  27. 27.
    Johanson, J., Vahlne, J.E.: The internationalization process of the firm, a model of knowledge development and increasing foreign market commitment. J. Intl. Bus. Stud. 8, 22–32 (1977)Google Scholar
  28. 28.
    Julstrom, B.A.: Effects of contest length and noise on reciprocal altruism, cooperation, and payoffs in the iterated prisoners dilemma. In: Proc. 7th Intl. Conf. Genetic Algorithms (ICGA 1997), pp. 386–392. Morgan Kaufmann, San Francisco (1997)Google Scholar
  29. 29.
    Lee, D.J.: Effect of cultural distance on the relational exchange exporters and importers. J. Glob. Market. 11(4), 7–22 (1998)CrossRefGoogle Scholar
  30. 30.
    Leimar, O., Hammerstein, P.: Evolution of cooperation through indirect reciprocity. Proc. Royal Society of London, Series B 268, 745–753 (2001)CrossRefGoogle Scholar
  31. 31.
    Lindgren, K., Johansson, J.: Coevolution of strategies in n-person prisoner’s dilemma. In: Crutchfield, J., Schuster, P. (eds.) Evolutionary Dynamics- Exploring the Interplay of Selection, Neutrality, Accident, and Function. Addison-Wesley (2001)Google Scholar
  32. 32.
    Linnemann, H.: An International Study of International Trade Flows. North-Holland, Amsterdam (1966)Google Scholar
  33. 33.
    Lumsden, M.: The Cyprus conflict as a prisoner’s dilemma. J. Confl. Resolut. 17, 7–32 (1973)CrossRefGoogle Scholar
  34. 34.
    Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press (1982)Google Scholar
  35. 35.
    Nakamaru, M., Matsuda, H., Iwasa, Y.: The evolution of cooperation in a lattice-structured population. J. Theor. Biol. 184, 65–81 (1996)CrossRefGoogle Scholar
  36. 36.
    Nordstrom, K., Vahlne, J.E.: Is the globe shrinking? Psychic distance and the establishment of Swedish sales subsidies. In: Landeck, M. (ed.) Intl. Trade: Regional and Global Issues. St. Martin Press, New York (1994)Google Scholar
  37. 37.
    Nowak, M.A., Sigmund, K.: The dynamics of indirect reciprocity. J. Theor. Biol. 194, 561–574 (1998)CrossRefGoogle Scholar
  38. 38.
    Nowak, M.A., Sigmund, K.: Evolution of indirect reciprocity by image scoring. Nature 393, 573–577 (1998)CrossRefGoogle Scholar
  39. 39.
    Nowak, M.A., Sigmund, K.: Evolution of indirect reciprocity. Nature 437, 1291–1298 (2005)CrossRefGoogle Scholar
  40. 40.
    O’Grady, S., Lane, W.: The psychic distance paradox. J. Intl. Bus. Stud. 27(2), 309–333 (1996)CrossRefGoogle Scholar
  41. 41.
    Rudolph, G.: Convergence properties of canonical genetic algorithms. IEEE Trans. Neural Netw. 5(1) (1994)Google Scholar
  42. 42.
    Seo, Y.G., Cho, S.B., Yao, X.: Emergence of cooperative coalition in NIPD game with localization of interaction and learning. In: Proc. Cong. Evol. Comput. (CEC 1999), pp. 877–884 (1999)Google Scholar
  43. 43.
    Sigmund, K., Nowak, M.A.: Evolutionary game theory. Current Biology 9, R503–R505 (1999)CrossRefGoogle Scholar
  44. 44.
    Tucker, A.W.: A Two-Person Dilemma. Stanford Univ. (USA) (1950)Google Scholar
  45. 45.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)MATHGoogle Scholar
  46. 46.
    Wu, J., Axelrod, R.: How to cope with noise in the iterated prisoner’s dilemma. J. Confl. Resolut. 39, 183–189 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of NottinghamJalan BrogaMalaysia

Personalised recommendations