Physical Random Number Generations and Photonic Integrated Circuits for Chaotic Generators

Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 111)

Abstract

Another important application for optical secure communications is high-speed physical random number generations. Using outputs from chaotic semiconductor lasers, ultra-high-speed random number generations higher than several tens to hundreds GHz can be attained. The subjects related to the generations of high quality random bit sequences are studied. For the implementation of optical communications and random number generations, photonic integrated circuits as chaotic generators are also presented.

Keywords

Semiconductor Laser Optical Feedback Chaotic Time Series Random Number Sequence Photonic Integrate Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Argyris A, Hamacher M, Chlouverakis KE, Bogris A, Syvridis D (2008) Photonic integrated device for chaos applications in communications. Phys Rev Lett 100: 14101-1–4Google Scholar
  2. Argyris A, Grivas E, Hamacher M, Bogris A, Syvridis D (2010a) Chaos-on-a-chip secures data transmission in optical fiber links. Opt Express 18:5188–5198Google Scholar
  3. Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D (2010b) Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit. Opt Express 18:18763–18768Google Scholar
  4. Bauer S, Brox O, Kreissl J, Sartorius B, Radziunas M, Sieber J, Wünsche HJ, Henneberger F (2004) Nonlinear dynamics of semiconductor lasers with active optical feedback. Phys Rev E 69:016206-1–10Google Scholar
  5. Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M (2003) A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC. IEEE Trans Comput 52:403–409Google Scholar
  6. Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74:145–195Google Scholar
  7. Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A (2011) Fast nondeterministic random-bit generation using on-chip chaos lasers. Phys Rev A 83:031803(R)-1–4Google Scholar
  8. Hirano K, Amano K, Uchida A, Naito S, Inoue M, Yoshimori S, Yoshimura K, Davis P (2009) Characteristics of fast physical random bit generation using chaotic semiconductor lasers. IEEE J Quantum Electron 45:1367–1378Google Scholar
  9. Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P (2010) Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt Express 18:5512–5524Google Scholar
  10. Honjo T, Uchida A, Amano K, Hirano K, Someya H, Okumura H, Yoshimura K, Davis P, Tokura Y (2009) Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers. Opt Express 17:9053–9061Google Scholar
  11. Huybrechts K, Morthier G, Baets R (2008) Fast all-optical flip-flop based on a single distributed feedback laser diode. Opt Express 16:11405–11410ADSCrossRefGoogle Scholar
  12. Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M (2010) An optical ultrafast random bit generator. Nat Photon 4:58–61Google Scholar
  13. Kawaguchi H (1994) Bistabilities and nonlinearities in laser diodes. Artech House, LondonGoogle Scholar
  14. Knuth D (1996) The art of computer programming.Seminumerical algorithms: vol 2, 3rd edn. Addison-Wesley, BostonGoogle Scholar
  15. Li P, Wang YC, Zhang JZ (2010) All-optical fast random number generator. Opt Express 18:20360–20369Google Scholar
  16. Li X, Cohen AB, Murphy TE, Roy R (2011) Scalable parallel physical random number generator based on a superluminescent LED. Opt Lett 36:1020–1022Google Scholar
  17. Marsaglia G, Zaman A, Tsang WW (1990) Toward a universal random number generator. Stat Probab Lett 9:35-39Google Scholar
  18. Marsaglia G (1995) Diehard: a battery of tests of randomness. http://www.stat.fsu.edu/pub/diehard/
  19. Qi B, Chi YM, Lo HK, Qian L (2010) High-speed quantum random number generation by measuring phase noise of a single-mode laser. Opt Lett 35:312–314Google Scholar
  20. Reidler I, Aviad Y, Rosenbluh M, Kanter, I (2009) Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys Rev Lett 103:024102-1–4Google Scholar
  21. Rontani D, Locquet A, Sciamanna M, Citrin DS (2007) Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Opt Lett 32:2960–2962Google Scholar
  22. Rontani D, Locquet A, Sciamanna M, Citrin DS, Ortin S (2009) Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view. IEEE J Quantum Electron 45:879–891Google Scholar
  23. Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M (2001) A statistical test suite for random and pseudorandom number generators for cryptographic applications. Nat Inst Stand Technol (Special Publication) 800–22Google Scholar
  24. Stinson DR (1995) Cryptography: theory and practice. CRC Press, Boca RatonGoogle Scholar
  25. Symul T, Assad SM, Lamb PK (2011) Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl Phys Lett 98:231103-1–3Google Scholar
  26. Tronciu VZ, Mirasso CR, Colet P, Hamacher M, Benedetti M, Vercesi V, Annovazzi-Lodi V (2010) Chaos generation and synchronization using an integrated source with an air gap. IEEE J Quantum Electron 46:1840–1846Google Scholar
  27. Uchida A (2011) Review on ultra-fast physical number generators based on optical random phenomena. Rev Laser Eng 39:508–514 (in Japanese)Google Scholar
  28. Uchida A (2012) Optical communication with chaotic lasers: applications of nonlinear dynamics and synchronization. Wiley, BerlinGoogle Scholar
  29. Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P (2008) Fast physical random bit generation with chaotic semiconductor lasers. Nat Photon 2:728–732Google Scholar
  30. Wang Y, Li P, Zhang J (2010) Fast random bit generation in optical domain with ultrawide bandwidth chaotic laser. IEEE Photon Technol Lett 22:1680–1682Google Scholar
  31. Williams CRS, Salevan JC, Li X, Roy R, Murphy TE (2010) Fast physical random number generator using amplified spontaneous emission. Opt Express 23:23584–23597Google Scholar
  32. Wu JG, Xia GQ, Wu ZM (2009) Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback. Opt Express 17:20124–20133Google Scholar
  33. Wu JG, Xia GQ, Tang X, Lin XD, Deng T, Fan L, Wu ZM (2010) Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser. Opt Express 18:6661–6666Google Scholar
  34. Wu JG, Wu ZM, Tang X, Lin XD, Deng T, Xia GQ, Feng GY (2011) Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers. IEEE Photon Technol Lett 23:759–781Google Scholar
  35. Wünsche HJ, Bauer S, Kreissl K, Ushakov O, Korneyev N, Henneberger F, Wille E, Erzgräber H, Peil M, Elsäßer W, Fischer I (2005) Synchronization of delay-coupled oscillators: a study of semiconductor lasers. Phys Rev Lett 94:163901-1–4Google Scholar
  36. Yousefi Y, Barbarin Y, Beri S, Bente EAJM, Smit MK, Nötzel R, Lenstra D (2007) New role for nonlinear dynamics and chaos in integrated semiconductor laser technology. Phys Rev Lett 98:044101-1–4Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of EngineeringShizuoka UniversityHamamatsu, ShizuokaJapan

Personalised recommendations