Masonry Piers, Walls, and Towers under Vertical Loads

Part of the Springer Series in Solid and Structural Mechanics book series (SSSSM, volume 1)

Abstract

This chapter is addressed to the structural analysis under vertical loads of walls, piers, and towers. For them, the nonlinear interaction between the destabilizing effects of the axial loads and the masonry no-tension response can be very strong. Instability analysis of the masonry pier under an eccentric axial load is firstly studied in the wake of a relevant study of Yokel. The strong sensitivity of the pier strength to the eccentricity of the load is pointed out and comparisons are made with the case of reinforced concrete columns.

Static analysis of building masonry walls is then examined. For them the presence of offsets of the wall thickness at the various stories play a relevant role. Instability of towers whose behavior can be strongly influenced by foundation deformability, is analyzed at the end of the section. Special attention has given to the stability analysis of the Pisa Tower, which recently underwent an outstanding restoration work.

Keywords

Axial Load Vertical Load Critical Weight Collapse Load Building Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burland, J.B.: The enigma of the leaning of the tower of Pisa. The sixth Spencer J. Buchanam Lecture. A&M University, Texas (1998)Google Scholar
  2. Burland, J.B., Jamiolkowski, M., Viggiani, C.: The Restoration of the Leaning Tower of Pisa: Geotechnical Aspects. In: Workshop on the Restoration of the Leaning Tower of Pisa, Preprint vol. 1, Pisa (1999)Google Scholar
  3. Cervenka, V., Cervenka, J.: Atena program documentation, User’s manual for Atena 2D, Prague (2002)Google Scholar
  4. Como, M.: Plastic and Visco–Plastic Stability of Leaning Towers. In: Ferrarese, G., d’Elba, I. (eds.) Fisica matematica e Ingegneria: rapporti e compatibilità, Conv. Intern. in memoria di G. Krall, Pitagora, Bologna, Giugno 10-14 (1993)Google Scholar
  5. Como, M., Ianniruberto, U.: Sulla resistenza laterale di pilastri caricati assialmente e costituiti da materiale elastico–non resistente a trazione. In: XII Congresso Naz. AIMETA 1995, Naples, Ottobre 3-6 (1995)Google Scholar
  6. Como, M.T.: Il Restauro dei Monumenti a Torre in muratura. In: Restauro, pp. 152–153. Edizioni Scientifiche Italiane, Naples (2000)Google Scholar
  7. Como, M., Ianniruberto, U., Imbimbo, M.: A rigid plastic model of the under–excavation technique applied to stabilize leaning towers. In: Lourenço, P.B., Roca, P. (eds.) Constructions, Guimarães (2001)Google Scholar
  8. De Falco, A., Lucchesi, M.: Stability of no-tension beam–columns with bounded compressive strength. In: Proc. IASS–IACM 2000, Fourth Int. Colloq. Comput. Shell Spatial Struct., Chania Crete, Greece, June 4-7 (2000)Google Scholar
  9. De Falco, A., Lucchesi, M.: Explicit solutions for the stability of no–tension beam–columns. Intern. Journ. of Struct. Stability and Dynamics 3(2), 195–213 (2003)MATHCrossRefGoogle Scholar
  10. De Fez, A.: Il consolidamento degli edifici, Liguori, Naples (1992)Google Scholar
  11. Desideri, A., Russo, G., Viggiani, C.: La stabilità di torri su terreno deformabile. Rivista Italiana di Geotecnica 1/97 (1997) Google Scholar
  12. de Witte, F.C., Kikstra, W.P.: Diana User’s Manual, Nonlinear Analysis. Delft, Netherlands (1990)Google Scholar
  13. Edmunds, H.E.: The Use of Underexcavation as a means of Stabilising the Leaning Tower of Pisa: Scale and Model Tests. MSc thesis, Department of Civil Engineering, Imperial College of Science, Technology and Medicine, London (1993)Google Scholar
  14. Frisch-Fay, R.: Stability of masonry piers. Int. Journal of Solids and Structures 11(2) (1975)Google Scholar
  15. Giuffrè, A.: Letture sulla Meccanica delle Murature Storiche, Facoltà di Architettura dell’università di Roma La Sapienza, Rome (1990)Google Scholar
  16. Krall, G.: Statica dei mezzi elastici cosiddetti viscosi e sue applicazioni. Acc. Naz.le dei Lincei, fasc. 3–4, Rome (1947)Google Scholar
  17. Hambly, E.C.: Soil buckling and the leaning instability of tall structures. The Structural Engineer 63A(3) (1985)Google Scholar
  18. Jamiolkowski, M., Burland, J.B., Viggiani, C.: The statbilisation of the leaning Tower of Pisa. Soil and Foundations 43(5) (2003)Google Scholar
  19. La Mendola, L., Papia, M.: Stability of masonry piers under their own weight and eccentric load. Journ. of Struct. Engineering 119(6) (1993)Google Scholar
  20. Lancellotta, R.: The stability of a rigid column with non–linear restraint. Geotechnique 2 (1993)Google Scholar
  21. Meyerhof, G.G.: The ultimate bearing capacity of Foundations. Geotechnique 2(3) (1951)Google Scholar
  22. Napoli, P.: Modellazione numerica della interazione struttura suolo. Atti del Dpt. di Ingegn. Strutturale, Politecnico di Turin (1992)Google Scholar
  23. Norme Tecniche sulle Costruzioni, Ministero delle Infrastrutture e dei Trasporti (2005)Google Scholar
  24. Shrive, N.G., England, G.L.: Elastic, creep and shrinkage behavior of masonry. Intern. Journ. of Masonry Construction 1(3) (1981)Google Scholar
  25. Tamez, E., Ovando, E., Santoyo, E.: Underexcavation of Mexico City’s Metropolitan Cathedral and Sagrario Church. In: Proc. 14th Int Conf. Soil Mech. & Foundtn. Engrg., vol. 4 (1997)Google Scholar
  26. Terracina, F.: Foundations of the Tower of Pisa. Geotechnique 12, 4 (1962)Google Scholar
  27. Yokel, F.Y.: Stability and load capacity of members with no tensile strength. Proc. A.S.C.E. 87, ST7 (1971)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of Rome TorvergataRomaItaly

Personalised recommendations