Assessment of the Model

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the previous chapters, we have developed a model to explain quantitatively how the reflectance of a silicon sample can be modified by doping and/or laser-injected carriers and heat. In this chapter, we evaluate the accuracy of the model on two types of samples, namely homogeneously doped samples and shallow doped layers.

Keywords

Doping Concentration Plasma Component Decay Length Thermal Component Signal Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Opsal, M.W. Taylor, W.L. Smith, A. Rosencwaig, Temporal behavior of modulated optical reflectance in silicon. J. Appl. Phys. 61(1), 240–248 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    F. Dortu, Low-Frequency Modulated Optical Reflectance for the One-Dimensional Characterization of Ultra-Shallow Junctions. Ph.D. thesis, Katholieke Universiteit Leuven, 2009Google Scholar
  3. 3.
    A. Mandelis, L. Nicolaides, Y. Chen, Structure and the reflectionless/refractionless nature of parabolic diffusion-wave fields. Phys. Rev. Lett. 87(2), 020801/1-4 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    J. Bogdanowicz, F. Dortu, T. Clarysse, W. Vandervorst, E. Rosseel, N.D. Nguyen, D. Shaughnessy, A. Salnik, L. Nicolaides, Nondestructive extraction of junction depths of active doping profiles from photomodulated optical reflectance offset curves. J. Vac. Sci. Technol. B 28(1), C1C1–C1C7 (2010)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    E. Rosseel, J. Bogdanowicz, T. Clarysse, W. Vandervorst, C. Ortolland, T. Hoffmann, A. Salnik, L. Nicolaides, S.H. Han, D.H. Petersen, R. Lin, O. Hansen, Study of submelt laser induced junction nonuniformities using therma-probe. J. Vac. Sci. Technol. B 28(1), C1C21–C1C26 (2010)CrossRefGoogle Scholar
  7. 7.
    R. Thalhammer, Internal Laser Probing Techniques for Power Devices: Analysis, Modeling and Simulation. Ph.D. thesis, Universitat Muchen, 2000, http://tumb1.biblio.tu-muenchen.de/publ/diss/ei/2000/thalhammer.pdf
  8. 8.
    D.B.M. Klaassen, A unified mobility model for device simulation. 1. model-equations and concentration-dependence. Solid-State Electron. 35(7), 953–959 (July 1992)ADSCrossRefGoogle Scholar
  9. 9.
    T. Clarysse, J. Bogdanowicz, J. Goossens, A. Moussa, E. Rosseel, W. Vandervorst, D.H. Petersen, R. Lin, P.F. Nielsen, O. Hansen, G. Merklin, N.S. Nennett, N.E.B. Cowern, On the analysis of the activation mechanisms of sub-melt laser anneals. Mater. Sci. Eng. B 154–155, 24–30 (2008)CrossRefGoogle Scholar
  10. 10.
    D.K. Schroder, Semiconductor Material and Device Characterization, Chap. 9 (Wiley-IEEE Press, New York, 2006)Google Scholar
  11. 11.
    D.H. Petersen, O. Hansen, R. Lin, P.F. Nielsen, Micro-four-point probe hall effect measurement method. J. Appl. Phys. 104(1), 013710-1-10 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    A. Schenk, Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation. J. Appl. Phys. 84(7), 3684–3695 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    F. Dortu, J. Bogdanowicz, T. Clarysse, W. Vandervorst, Impact of band gap narrowing and surface recombination on photoelectrothermal modulated optical reflectance power curves. J. Vac. Sci. 26, 322–332 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Bogdanowicz, F. Dortu, T. Clarysse, W. Vandervorst, D. Shaughnessy, A. Salnik, L. Nicolaides, Impact of inactive dopants in chemical vapor deposition layers on photomodulated optical reflectance. Mater. Sci. Eng. B 154–155, 234–239 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.IMECLeuvenBelgium

Personalised recommendations