Efficient Network Coding Signatures in the Standard Model

  • Dario Catalano
  • Dario Fiore
  • Bogdan Warinschi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7293)

Abstract

Network Coding is a routing technique where each node may actively modify the received packets before transmitting them.While this departure from passive networks improves throughput and resilience to packet loss it renders transmission susceptible to pollution attacks where nodes can misbehave and change in a malicious way the messages transmitted. Nodes cannot use standard signature schemes to authenticate the modified packets: this would require knowledge of the original sender’s signing key. Network coding signature schemes offer a cryptographic solution to this problem. Very roughly, such signatures allow signing vector spaces (or rather bases of such spaces), and these signatures are homomorphic: given signatures on a set of vectors it is possible to create signatures for any linear combination of these vectors. Designing such schemes is a difficult task, and the few existent constructions either rely on random oracles or are rather inefficient. In this paper we introduce two new network coding signature schemes. Both of our schemes are provably secure in the standard model, rely on standard assumptions, and are in the same efficiency class as previous solutions based on random oracles.

References

  1. 1.
    Ahlswede, R., Cai, N., Li, S., Yeung, R.W.: Network information flow. IEEE Transactions on Information Theory 46(4), 1204–1216 (2000)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 1–20. Springer, Heidelberg (2012), http://eprint.iacr.org/2011/096 CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N., Libert, B.: Homomorphic Network Coding Signatures in the Standard Model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Barić, N., Pfitzmann, B.: Collision-Free Accumulators and Fail-Stop Signature Schemes without Trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a Linear Subspace: Signature Schemes for Network Coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Freeman, D.M.: Homomorphic Signatures for Polynomial Functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Freeman, D.M.: Linearly Homomorphic Signatures over Binary Fields and New Tools for Lattice-Based Signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the standard model. Cryptology ePrint Archive, http://eprint.iacr.org/2011/696
  11. 11.
    Catalano, D., Fiore, D., Warinschi, B.: Adaptive Pseudo-free Groups and Applications. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Chou, P.A., Wu, Y., Jain, K.: Practical network coding. In: 41st Allerton Conference on Communication, Control and Computing (2003)Google Scholar
  13. 13.
    Freeman, D.M.: Improved Security for Linearly Homomorphic Signatures: A Generic Framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012), http://eprint.iacr.org/2012/060 Google Scholar
  14. 14.
    Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure Network Coding over the Integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 142–160. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Gkantsidis, C., Rodriguez, P.: Network coding for large scale content distribution. In: Proc. of IEEE INFOCOM 2005, pp. 2235–2245 (2005)Google Scholar
  16. 16.
    Ho, T., Koetter, R., Médard, M., Karger, D., Effros, M.: The benefit of coding over routing in a randomized setting. In: Proc. of International Symposium on Information Theory (ISIT), p. 442 (2003)Google Scholar
  17. 17.
    Ho, T., Leong, B., Koetter, R., Médard, M., Effros, M., Karger, D.: Byzantine modification detection in multicast networks using randomized network coding. In: Proc. of International Symposium on Information Theory (ISIT), pp. 144–152 (2004)Google Scholar
  18. 18.
    Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A random linear network coding approach to multicast. IEEE Transactions on Information Theory 52, 4413–4430 (2006)CrossRefGoogle Scholar
  19. 19.
    Hofheinz, D., Kiltz, E.: Programmable Hash Functions and Their Applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Jaggi, S., Langberg, M., Katti, S., Ho, T., Katabi, D., Médard, M., Effros, M.: Resilient network coding in the presence of byzantine adversaries. IEEE Transactions on Information Theory 54, 2596–2603 (2008)CrossRefGoogle Scholar
  21. 21.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic Signature Schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Krohn, M., Freedman, M., Mazieres, D.: On the-fly verification of rateless erasure codes for efficient content distribution. In: 2004 IEEE Symposium on Security and Privacy, Berkeley, California, USA, May 9–12, pp. 226–240. IEEE Computer Society Press (2004)Google Scholar
  23. 23.
    Robert-Li, S.-Y., Yeung, R.Y., Cai, N.: Linear network coding. IEEE Transactions on Information Theory 49(2), 371–381 (2003)CrossRefGoogle Scholar
  24. 24.
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Dario Catalano
    • 1
  • Dario Fiore
    • 2
  • Bogdan Warinschi
    • 3
  1. 1.Dipartimento di Matematica e InformaticaUniversitá di CataniaItaly
  2. 2.Department of Computer ScienceNew York UniversityUSA
  3. 3.Dept. Computer ScienceUniversity of BristolUK

Personalised recommendations