Outsider-Anonymous Broadcast Encryption with Sublinear Ciphertexts

  • Nelly Fazio
  • Irippuge Milinda Perera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7293)

Abstract

In the standard setting of broadcast encryption, information about the receivers is transmitted as part of the ciphertext. In several broadcast scenarios, however, the identities of the users authorized to access the content are often as sensitive as the content itself. In this paper, we propose the first broadcast encryption scheme with sublinear ciphertexts to attain meaningful guarantees of receiver anonymity. We formalize the notion of outsider-anonymous broadcast encryption(oABE), and describe generic constructions in the standard model that achieve outsider-anonymity under adaptive corruptions in the chosen-plaintext and chosen-ciphertext settings. We also describe two constructions with enhanced decryption, one under the gap Diffie-Hellman assumption, in the random oracle model, and the other under the decisional Diffie-Hellman assumption, in the standard model.

Keywords

Recipient Privacy Broadcast Encryption Anonymous IBE Subset Cover Framework 

References

  1. 1.
    Berkovits, S.: How to Broadcast a Secret. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991)Google Scholar
  2. 2.
    Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    AACS: Advanced access content system, http://www.aacsla.com/
  4. 4.
    Goh, E.J., Shacham, H., Modadugu, N., Boneh, D.: Sirius: Securing remote untrusted storage. In: ISOC Network and Distributed Systems Security Symposium—NDSS 2003, pp. 131–145 (2003)Google Scholar
  5. 5.
    Garay, J.A., Staddon, J., Wool, A.: Long-Lived Broadcast Encryption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Dodis, Y., Fazio, N.: Public Key Broadcast Encryption for Stateless Receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Dodis, Y., Fazio, N.: Public Key Trace and Revoke Scheme Secure against Adaptive Chosen Ciphertext Attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revoking. In: Principles of Distributed Computing—PODC 2003, pp. 190–199 (2003); Invited to the PODC 2003 Special Issue of Journal of Distributed ComputingGoogle Scholar
  11. 11.
    Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: ID-based encryption for complex hierarchies with applications to forward security and broadcast encryption. In: ACM Computer and Communications Security—CCS 2004, pp. 354–363 (2004)Google Scholar
  12. 12.
    Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In: ACM Computer and Communications Security—CCS 2006, pp. 211–220 (2006)Google Scholar
  14. 14.
    Gentry, C., Waters, B.: Adaptive Security in Broadcast Encryption Systems (with Short Ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Barth, A., Boneh, D., Waters, B.: Privacy in Encrypted Content Distribution Using Private Broadcast Encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption. Cryptology ePrint Archive, Report 2011/476 (2011)Google Scholar
  17. 17.
    Krzywiecki, Ł., Kubiak, P., Kutyłowski, M.: A Revocation Scheme Preserving Privacy. In: Lipmaa, H., Yung, M., Lin, D. (eds.) Inscrypt 2006. LNCS, vol. 4318, pp. 130–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Yu, S., Ren, K., Lou, W.: Attribute-based on-demand multicast group setup with receiver anonymity. In: Security and Privacy in Communication Networks—SecureComm 2008, pp. 18:1–18:6 (2008)Google Scholar
  19. 19.
    Jarecki, S., Liu, X.: Unlinkable Secret Handshakes and Key-Private Group Key Management Schemes. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 270–287. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  23. 23.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Boneh, D., Boyen, X.: Secure Identity Based Encryption Without Random Oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: IEEE Symposium on Foundations of Computer Science—FOCS 2007, pp. 647–657 (2007)Google Scholar
  26. 26.
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (Without Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Abdalla, M., Bellare, M., Neven, G.: Robust Encryption. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Fazio, N., Perera, I.M.: Outsider-Anonymous Broadcast Encryption with Sublinear Ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 225–242. Springer, Heidelberg (2012)Google Scholar
  30. 30.
    Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Nelly Fazio
    • 1
    • 2
  • Irippuge Milinda Perera
    • 2
  1. 1.The City College of CUNYUSA
  2. 2.The Graduate Center of CUNYUSA

Personalised recommendations