Towards a Statistical Characterization of the Interdomain Traffic Matrix

  • Jakub Mikians
  • Amogh Dhamdhere
  • Constantine Dovrolis
  • Pere Barlet-Ros
  • Josep Solé-Pareta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7290)

Abstract

Identifying the statistical properties of the Interdomain Traffic Matrix (ITM) is fundamental for Internet techno-economic studies but challenging due to the lack of adequate traffic data. In this work, we utilize a Europe-wide measurement infrastructure deployed at the GÉANT backbone network to examine some important spatial properties of the ITM. In particular, we analyze its sparsity and characterize the distribution of traffic generated by different ASes. Our study reveals that the ITM is sparse and that the traffic sent by an AS can be modeled as the LogNormal or Pareto distribution, depending on whether the corresponding traffic experiences congestion or not. Finally, we show that there exist significant correlations between different ASes mostly due to relatively few highly popular prefixes.

Keywords

Internet interdomain traffic measurements 

References

  1. 1.
    Alderson, D., Chang, H., Roughan, M., Uhlig, S., Willinger, W.: The many facets of internet topology and traffic. Networks and Heterogeneous Media (2006)Google Scholar
  2. 2.
    Bharti, V., Kankar, P., Setia, L., Gürsun, G., Lakhina, A., Crovella, M.: Inferring invisible traffic. In: Proceedings of the 6th International Conference. ACM (2010)Google Scholar
  3. 3.
    Cha, M., Kwak, H., Rodriguez, P., Ahn, Y., Moon, S.: I tube, you tube, everybody tubes: analyzing the world’s largest user generated content video system. In: Proc. of the 7th ACM SIGCOMM Conference (2007)Google Scholar
  4. 4.
    Chang, H., Jamin, S., Mao, Z.M., Willinger, W.: An Empirical Approach to Modeling Inter-AS Traffic Matrices. In: Proceedings of the Internet Measurement Conference, IMC (2005)Google Scholar
  5. 5.
    Downey, A.: Evidence for long-tailed distributions in the internet. In: Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement. ACM (2001)Google Scholar
  6. 6.
    Erramill, V., Crovella, M., Taft, N.: An independent-connection model for traffic matrices. In: Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement (2006)Google Scholar
  7. 7.
    Fang, W., Peterson, L.: Inter-AS Traffic Patterns and Their Implications. In: IEEE Global Telecommunications Conference, GLOBECOM (December 1999)Google Scholar
  8. 8.
    Feldmann, A., Kammenhuber, N., Maennel, O., Maggs, B., De Prisco, R., Sundaram, R.: A Methodology for Estimating Interdomain Web Traffic Demand. In: Proceedings of ACM SIGCOMM Internet Measurement Conference (IMC). ACM (2004)Google Scholar
  9. 9.
    Gadkari, K., Massey, D., Papadopoulos, C.: Dynamics of Prefix Usage at an Edge Router. In: Spring, N., Riley, G.F. (eds.) PAM 2011. LNCS, vol. 6579, pp. 11–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide, J., Jahanian, F.: Internet inter-domain traffic. In: Proceedings of the ACM SIGCOMM 2010 Conference (2010)Google Scholar
  11. 11.
    Nucci, A., Sridharan, A., Taft, N.: The problem of synthetically generating ip traffic matrices: initial recommendations. ACM SIGCOMM Computer Communication Review (2005)Google Scholar
  12. 12.
    Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. IEEE/ACM Transactions on Networking, ToN (2004)Google Scholar
  13. 13.
    Uhlig, S., Quoitin, B., Lepropre, J., Balon, S.: Providing public intradomain traffic matrices to the research community. ACM SIGCOMM Computer Communication Review (2006)Google Scholar
  14. 14.
    University of Oregon Route Views Project, http://www.routeviews.org
  15. 15.
    Zhang, Y., Roughan, M., Willinger, W., Qiu, L.: Spatio-temporal compressive sensing and internet traffic matrices. ACM SIGCOMM Computer Communication Review (2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Jakub Mikians
    • 1
  • Amogh Dhamdhere
    • 2
  • Constantine Dovrolis
    • 3
  • Pere Barlet-Ros
    • 1
  • Josep Solé-Pareta
    • 1
  1. 1.UPC BarcelonaTechSpain
  2. 2.CAIDAUSA
  3. 3.Georgia TechUSA

Personalised recommendations