Estimating File-Spread in Delay Tolerant Networks under Two-Hop Routing

  • Arshad Ali
  • Eitan Altman
  • Tijani Chahed
  • Dieter Fiems
  • Manoj Panda
  • Lucile Sassatelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7290)

Abstract

We consider a Delay/Disruption Tolerant Network under two-hop routing. Our objective is to estimate and track the degree of spread of a message/file in the network. Indeed, having such real-time information is critical for on-line control of routing and energy expenditure. It also benefits the multi-casting application. With exponential inter-meeting times of mobile nodes: (i) for the estimation problem, we obtain exact expressions for the minimum mean-squared error (MMSE) estimator, and (ii) for the tracking problem, we first derive the diffusion approximations for the system dynamics and the measurements and then apply Kalman filtering. We also apply the solutions of the estimation and filtering problems to predict the time when a certain pre-defined fraction of nodes have received a copy of the message/file. Our analytical results are corroborated with extensive simulation results.

Keywords

delay/disruption tolerant networks two-hop routing multi-casting estimation and tracking Kalman filtering level-crossing 

References

  1. 1.
    Alouf, S., Altman, E., Nain, P.: Optimal on-line estimation of the size of a dynamic multicast group. In: Infocom 2002, vol. 2, pp. 1109–1118 (June 2002)Google Scholar
  2. 2.
    Bremaud, P.: Point Processes and Queues: Martingale Dynamics. Springer (1981)Google Scholar
  3. 3.
    Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1988)MATHCrossRefGoogle Scholar
  4. 4.
    Kurtz, T.G.: Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes. Journal of Applied Probability 7(1), 49–58 (1970)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Lindgren, A., Doria, A., Schelen, O.: Probabilistic Routing in Intermittently Connected Networks. In: ACM Mobicom (2003)Google Scholar
  6. 6.
    Mandelbaum, A., Massey, W., Reiman, M.I.: Strong approximations for markovian service networks. Queueing Systems 30, 149–201 (1998)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Mandelbaum, A., Pats, G.: State-dependent queues: approximations and applications. In: Kelly, F., Williams, R.J. (eds.) IMA Volumes in Mathematics and Its Applications, vol. 71, pp. 239–282. Springer, Berlin (1995)Google Scholar
  8. 8.
    Poor, H.V.: An Introduction to Signal Detection and Estimation, 2nd edn. Springer (1994)Google Scholar
  9. 9.
    Simon, D.: Optimal State Estimation. John Wiley & Sons, Inc. (2006)Google Scholar
  10. 10.
    Spyropoulos, T., Psounis, K., Raghavendra, C.: Efficient Routing in Intermittently Connected Mobile Networks: The Multi-copy Case. IEEE/ACM Transaction on Networking 16(1), 63–76 (2008)CrossRefGoogle Scholar
  11. 11.
    Vahdat, A., Becker, D.: Epidemic Routing for Partially-Connected Ad Hoc Networks. Duke University, Tech. Rep. CS-200006 (2000)Google Scholar
  12. 12.
    Whitt, W.: Stochastic-Process Limits. Springer (2002)Google Scholar
  13. 13.
    Zhang, X., Neglia, G., Kurose, J., Towsley, D.: Performance Modeling of Epidemic Routing. Computer Networks 51, 2867–2891 (2007)MATHCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Arshad Ali
    • 1
  • Eitan Altman
    • 2
  • Tijani Chahed
    • 1
  • Dieter Fiems
    • 3
  • Manoj Panda
    • 1
  • Lucile Sassatelli
    • 4
  1. 1.Telecom SudParisEvry CedexFrance
  2. 2.INRIASophia-AntipolisFrance
  3. 3.Department of Telecommunications and Information Processing (TW07)SMACS Research GroupGentBelgium
  4. 4.Laboratoire I3SUniversité Nice Sophia Antipolis - CNRSFrance

Personalised recommendations