Advertisement

Cache “Less for More” in Information-Centric Networks

  • Wei Koong Chai
  • Diliang He
  • Ioannis Psaras
  • George Pavlou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7289)

Abstract

Ubiquitous in-network caching is one of the key aspects of information-centric networking (ICN) which has recently received widespread research interest. In one of the key relevant proposals known as Networking Named Content (NNC), the premise is that leveraging in-network caching to store content in every node it traverses along the delivery path can enhance content delivery. We question such indiscriminate universal caching strategy and investigate whether caching less can actually achieve more. Specifically, we investigate if caching only in a subset of node(s) along the content delivery path can achieve better performance in terms of cache and server hit rates. In this paper, we first study the behavior of NNC’s ubiquitous caching and observe that even naïve random caching at one intermediate node within the delivery path can achieve similar and, under certain conditions, even better caching gain. We propose a centrality-based caching algorithm by exploiting the concept of (ego network) betweenness centrality to improve the caching gain and eliminate the uncertainty in the performance of the simplistic random caching strategy. Our results suggest that our solution can consistently achieve better gain across both synthetic and real network topologies that have different structural properties.

Keywords

Information-centric networking caching betweenness centrality 

References

  1. 1.
    Koponen, T., et al.: A Data-oriented (and Beyond) Network Architecture. In: Proc. ACM SIGCOMM 2007, Kyoto, Japan (August 2007)Google Scholar
  2. 2.
    Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M., Briggs, N., Braynard, R.L.: Networking Named Content. In: Proc. ACM CoNEXT, pp. 1–12 (2009)Google Scholar
  3. 3.
    Trossen, D., et al.: Conceptual Architecture: Principles, Patterns and Sub-components Descriptions (May 2011), http://www.fp7-pursuit.eu/PursuitWeb/
  4. 4.
    Jokela, P., Zahemszky, A., Rothenberg, C., Arianfar, S., Nikander, P.: LIPSIN: Line Speed Publish/Subscribe Inter-networking. In: Proc. ACM SIGCOMM, Barcelona, Spain (2009)Google Scholar
  5. 5.
    Chai, W.K., et al.: CURLING: Content-ubiquitous resolution and delivery infrastructure for next-generation services. IEEE Commun. Mag. 49(3), 112–120 (2011)CrossRefGoogle Scholar
  6. 6.
    Psaras, I., Clegg, R.G., Landa, R., Chai, W.K., Pavlou, G.: Modelling and Evaluation of CCN-Caching Trees. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.) NETWORKING 2011, Part I. LNCS, vol. 6640, pp. 78–91. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Carofiglio, G., Gallo, M., Muscariello, L., Perrino, D.: Modelling data transfer in content centric networking. In: Proc. International Teletraffic Congress, ITC (2011)Google Scholar
  8. 8.
    Arianfar, S., Nikander, P., Ott, J.: Packet-level caching for information-centric networking. Finnish ICT-SHOK Future Internet Project, Tech. Rep. (2010)Google Scholar
  9. 9.
    Ghodsi, A., et al.: Information-centric Networking: Seeing the forest for the trees. In: ACM Workshop on Hot Topics in Networks (HotNets-X), Cambridge, MA (November 2011)Google Scholar
  10. 10.
    Dan, A., Towsley, D.: An approximate analysis of the lru and fifo buffer replacement schemes. In: ACM SIGMETRICS, pp. 143–152 (1990)Google Scholar
  11. 11.
    Jelenkovic, P., Radovanovic, A., Squillante, M.S.: Critical sizing of lru caches with dependent requests. Journal of Applied Probability 43(4), 1013–1027 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Laoutaris, N., Smaragdakis, G., Bestavros, A., Matta, I., Stavrakakis, I.: Distributed selfish caching. IEEE Trans. on Parallel and Distributed Systems 18(10) (2007)Google Scholar
  13. 13.
    Dán, G.: Cache-to-Cache: Could ISPs cooperate to decrease peer-to-peer content distribution costs? IEEE Trans. on Parallel and Distributed Systems 22(9) (2011)Google Scholar
  14. 14.
    Che, H., Tung, Y., Wang, Z.: Hierarchical web caching systems: modelling, design and experimental results. IEEE Journ. on Selected Areas of Communications 20(7) (2002)Google Scholar
  15. 15.
    Laoutaris, N., Che, H., Stavrakakis, I.: The LCD interconnection of LRU caches and its analysis. Performance Evaluation 63(7), 609–634 (2006)CrossRefGoogle Scholar
  16. 16.
    Wong, T.M., Wilkes, J.: My cache or yours? Making storage more exclusive. In: Proc. USENIX Annual Technical Conference, Monterey, CA, pp. 161–175 (2002)Google Scholar
  17. 17.
    Izquierdo, L.R., Hanneman, R.A.: Introduction to the Formal Analysis of Social Networks Using Mathematica. University of California, RiversideGoogle Scholar
  18. 18.
    Everett, M., Borgatti, S.: Ego network betweenness. Social Networks 27, 31–38 (2005)CrossRefGoogle Scholar
  19. 19.
    Pantazopoulos, P., Karaliopoulos, M., Stavrakakis, I.: Centrality-driven scalable service migration. In: Proc. International Teletraffic Congress, ITC (2011)Google Scholar
  20. 20.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wang, H., Hernandez, J.M., Van Mieghem, P.: Betweenness centrality in a weighted network. Physical Review E 77, 046105 (2008)Google Scholar
  22. 22.

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Wei Koong Chai
    • 1
  • Diliang He
    • 1
  • Ioannis Psaras
    • 1
  • George Pavlou
    • 1
  1. 1.Department of Electronic and Electrical EngineeringUniversity College LondonLondonUK

Personalised recommendations