Visualization of Rules in Rule-Based Classifiers

  • Susanne Bornelöv
  • Stefan Enroth
  • Jan Komorowski
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 15)


Interpretation and visualization of the classification models are important parts of machine learning. Rule-based classifiers often contain too many rules to be easily interpreted by humans, and methods for post-classification analysis of the rules are needed. Here we present a strategy for circular visualization of sets of classification rules. The Circos software was used to generate graphs showing all pairs of conditions that were present in the rules as edges inside a circle. We showed using simulated data that all two-way interactions in the data were found by the classifier and displayed in the graph, although the single attributes were constructed to have no correlation to the decision class. For all examples we used rules trained using the rough set theory, but the visualization would by applicable to any sort of classification rules. This method for rule visualization may be useful for applications where interaction terms are expected, and the size of the model limits the interpretability.


Feature Selection Histone Modification Association Rule Classification Rule Decision Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items in Large Databases. In: SIGMOD Conference, pp. 207–216 (1993)Google Scholar
  2. Bruzzese, D., Davino, C.: Visual Mining of Association Rules. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 103–122. Springer, Heidelberg (2008), doi:10.1007/978-3-540-71080-6_8CrossRefGoogle Scholar
  3. Buono, P., Costabile, M.F.: Visualizing Association Rules in a Framework for Visual Data Mining. In: Hemmje, M., Niederée, C., Risse, T. (eds.) From Integrated Publication and Information Systems to Information and Knowledge Environments. LNCS, vol. 3379, pp. 221–231. Springer, Heidelberg (2005), doi:10.1007/978-3-540-31842-2_22CrossRefGoogle Scholar
  4. Dramiński, M., Kierczak, M., Koronacki, J., Komorowski, J.: Monte Carlo Feature Selection and Interdependency Discovery in Supervised Classification. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds.) Advances in Machine Learning II. SCI, vol. 263, pp. 371–385. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. Enroth, S., Bornelöv, S., Wadelius, C., Komorowski, J.: Combinations of histone modifications mark exon inclusion levels. PLoS ONE 7(1), e29911 (2012), doi:10.1371/journal.pone.0029911CrossRefGoogle Scholar
  6. Greco, S., Pawlak, Z., Słowiński, R.: Generalized Decision Algorithms, Rough Inference Rules, and Flow Graphs. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 93–104. Springer, Heidelberg (2002), doi:10.1007/3-540-45813-1_12CrossRefGoogle Scholar
  7. Hahsler, M., Chelluboina, S.: Visualizing Association Rules in Hierarchical Groups. Interface, 1–11 (2011)Google Scholar
  8. Kierczak, M., Ginalski, K., Dramiński, M., Koronacki, J., Rudnicki, W.R., Komorowski, J.: A Rough Set Model of HIV-1 Reverse Transcriptase Resistome. Bioinformatics and Biology Insights 3, 109–127 (2009)Google Scholar
  9. Komorowski, J., Øhrn, A., Skowron, A.: The Rosetta Rough Set Software System. In: Klösgen, W., Zytkow, J. (eds.) Handbook of Data Mining and Knowledge Discovery. Oxford University Press (2002)Google Scholar
  10. Kontijevskis, A., Wikberg, J., Komorowski, J.: Computational Proteomics Analysis of HIV-1 Protease Interactome. Proteins 68, 305–312 (2007), doi:10.1002/prot.21415CrossRefGoogle Scholar
  11. Krzywinski, M.I., Schein, J.E., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., Marra, M.A.: Circos: an Information Aesthetic for Comparative Genomics. Genome. Res. 19, 1639–1645 (2009), doi:10.1101/gr.092759.109CrossRefGoogle Scholar
  12. Rainsford, C.P., Roddick, J.: Visualisation of Temporal Interval Association Rules. In: Leung, K.-S., Chan, L., Meng, H. (eds.) IDEAL 2000. LNCS, vol. 1983, pp. 91–96. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. Thearling, K., Becker, B., De Coste, D., Mawby, B., Pilote, M., Sommerfield, D.: Visualizing Data Mining Models. In: Fayyad, U., Grinstein, G., Wierse, A. (eds.) Information Visualization in Data Mining and Knowledge Discovery, pp. 205–222. Morgan Kaufmann, San Francisco (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Susanne Bornelöv
    • 1
  • Stefan Enroth
    • 2
  • Jan Komorowski
    • 1
    • 3
  1. 1.Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical CenterUppsala UniversityUppsalaSweden
  2. 2.Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck LaboratoryUppsala UniversityUppsalaSweden
  3. 3.Interdisciplinary Centre for Mathematical and Computational ModellingUniversity of WarsawWarszawaPoland

Personalised recommendations