Towards an Axiomatization of Simple Analog Algorithms

  • Olivier Bournez
  • Nachum Dershowitz
  • Evgenia Falkovich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7287)


We propose a formalization of analog algorithms, extending the framework of abstract state machines to continuous-time models of computation.


Transition System Analog Algorithm Analog Machine Turing Machine Algorithmic Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wikipedia. MONIAC computer, (viewed March 1, 2012)
  2. 2.
    Blass, A., Dershowitz, N., Gurevich, Y.: Exact Exploration and Hanging Algorithms. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 140–154. Springer, Heidelberg (2010), (viewed May 27, 2011)CrossRefGoogle Scholar
  3. 3.
    Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP completeness, recursive functions and universal machines. Bull. Amer. Math. Soc. (NS) 21, 1–46 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boker, U., Dershowitz, N.: The Church-Turing Thesis over Arbitrary Domains. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 199–229. Springer, Heidelberg (2008), (viewed January 10, 2012)CrossRefGoogle Scholar
  5. 5.
    Boker, U., Dershowitz, N.: Three Paths to Effectiveness. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 135–146. Springer, Heidelberg (2010), (viewed January 10, 2012)CrossRefGoogle Scholar
  6. 6.
    Bush, V.: The differential analyser. Journal of the Franklin Institute 212(4), 447–488 (1931)CrossRefGoogle Scholar
  7. 7.
    Bournez, O., Campagnolo, M.L.: A survey on continuous time computations. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms Changing Conceptions of What is Computable, pp. 383–423. Springer, New York (2008)Google Scholar
  8. 8.
    Cohen, J., Slissenko, A.: On implementations of instantaneous actions real-time ASM by ASM with delays. In: Proc. of the 12th Intern. Workshop on Abstract State Machines (ASM 2005), Paris, France, pp. 387–396 (2005)Google Scholar
  9. 9.
    Cohen, J., Slissenko, A.: Implementation of sturdy real-time abstract state machines by machines with delays. In: Proc. of the 6th Intern. Conf. on Computer Science and Information Technology (CSIT 2007). Academy of Science of Armenia, Yerevan (2007)Google Scholar
  10. 10.
    Coward, D.: Doug Coward’s Analog Computer Museum (2006), (viewed January 10, 2012)
  11. 11.
    Dershowitz, N., Falkovich, E.: A formalization and proof of the Extended Church-Turing Thesis (extended abstract). In: Studia Logica Conference on Trends in Logic, IX: Church Thesis: Logic, Mind and Nature, Krakow, Poland (June 2011), (viewed January 10, 2012)
  12. 12.
    Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof of Church’s Thesis. The Bulletin of Symbolic Logic 14(3), 299–350 (2009), (viewed April 15, 2009)MathSciNetGoogle Scholar
  13. 13.
    Glausch, A., Reisig, W.: A Semantic Characterization of Unbounded-Nondeterministic Abstract State Machines. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 242–256. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Börger, E. (ed.) Specification and Validation Methods, pp. 9–36. Oxford University Press (1995), (viewed April 15, 2009)
  15. 15.
    Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms. ACM Transactions on Computational Logic 1, 77–111 (2000), (viewed April 15, 2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gurevich, Y., Yavorskaya, T.: On bounded exploration and bounded nondeterminism. Technical Report MSR-TR-2006-07, Microsoft Research, Redmond, WA (January 2006), (viewed January 10, 2012)
  17. 17.
    Reisig, W.: On Gurevich’s theorem on sequential algorithms. Acta Informatica 39(5), 273–305 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rust, H.: Hybrid abstract state machines: Using the hyperreals for describing continuous changes in a discrete notation. In: Gurevich, Y., Kutter, P., Odersky, M., Thiele, L. (eds.) International Workshop on Abstract State Machines (Monte Verita, Switzerland), TIK-Report 87, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, pp. 341–356 (March 2000)Google Scholar
  19. 19.
    Shannon, C.E.: Mathematical theory of the differential analyser. Journal of Mathematics and Physics 20, 337–354 (1941)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olivier Bournez
    • 1
  • Nachum Dershowitz
    • 2
  • Evgenia Falkovich
    • 2
  1. 1.LIXEcole PolytechniquePalaiseau CedexFrance
  2. 2.School of Computer ScienceTel Aviv UniversityRamat AvivIsrael

Personalised recommendations