IEC-Based 3D Model Retrieval System

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 14)

Abstract

Recently, 3D CG animations have become in great demand for movie and video game industries. As a result, many 3D model and motion data have been created and stored. In this situation, we need any tools that help us to efficiently retrieve required data from such a pool of 3D models and motions. The authors have already proposed a motion retrieval system using Interactive Evolutionary Computation (IEC) based on Genetic Algorithm (GA). In this paper, the authors propose a 3D model retrieval system using the IEC based on GA and clarify the usefulness of the system by showing experimental results of 3D model retrievals practically performed by several users. The results indicate that the proposed system is useful for effectively retrieving required data from a 3D model database including many data more than one thousand.

Keywords

Genetic Algorithm Interactive Genetic Algorithm Interactive Evolutionary Computation Video Game Industry Genetic Algorithm Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assfalg, J., Del, B.A., Pala, P.: Spin images for retrieval of 3D objects by local and global similarity. In: Proc of the 17th International Conference on Pattern Recognition, ICPR 2004 (2004), doi:10.1109/ICPR.2004.1334675Google Scholar
  2. 2.
    Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proc. of the Second International Conference on Genetic Algorithms on Genetic Algorithms and their Application, pp. 14–21 (1987)Google Scholar
  3. 3.
    Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3D model retrieval. In: Proc. of Eurographics Computer Graphics Forum, EG 2003 (2003), doi:10.1111/1467-8659.00669Google Scholar
  4. 4.
    Cho, S.B.: Emotional image and musical information retrieval with interactive genetic algorithm. Proc. of the IEEE 92(4), 702–711 (2004), doi:10.1109/JPROC.2004.825900CrossRefGoogle Scholar
  5. 5.
    Elad, M., Tal, A., Ar, S.: Content based retrieval of VRML objects - an iterative and interactive approach. EG Multimedia, 97–108 (2001)Google Scholar
  6. 6.
    Eshelman, L.J., Schaffer, J.D.: Real-Coded Genetic Algorithms and Interval-Schemata. In: Foundations of Genetic Algorithms 2, pp. 187–202. Morgan Kaufman Publishers, San Mateo (1993)Google Scholar
  7. 7.
    Herrera, F., Lozano, M., Verdegay, J.L.: Tackling Real-Coded Genetic Algorithm: Operators and Tools for Behavioural Analysis. Journal of Artifitial Intelligence Review 12(4), 265–319 (1998), doi:10.1023/A:1006504901164MATHCrossRefGoogle Scholar
  8. 8.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proc. of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001 (2001), doi:10.1145/383259.383282Google Scholar
  9. 9.
    Lai, C.-C., Chen, Y.-C.: Color Image Retrieval Based on Interactive Genetic Algorithm. In: Chien, B.-C., Hong, T.-P., Chen, S.-M., Ali, M. (eds.) IEA/AIE 2009. LNCS, vol. 5579, pp. 343–349. Springer, Heidelberg (2009), doi:10.1007/978-3-642-02568-6_35CrossRefGoogle Scholar
  10. 10.
    McWherter, D., Peabody, M., Regli, W.C., Shokoufandeh, A.: Solid Model Databases: Techniques and Empirical Results. Journal of Computing and Information Science in Engineering (2001), doi:10.1115/1.1430233Google Scholar
  11. 11.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Program. Springer (1994)Google Scholar
  12. 12.
    Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient local visual features for shape-based 3D model retrieval. In: IEEE International Conference on Shape Modeling and Applications 2008 (2008), doi:10.1109/SMI.2008.4547955Google Scholar
  13. 13.
    Ono, I., Kobayashi, S.: A real-coded genetic algorithm for function optimization using the unimodal normal distribution crossover. In: Proc. of the Seventh International Conference on Genetic Algorithms, pp. 246–253 (1997)Google Scholar
  14. 14.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. Journal of ACM Transactions on Graphics (TOG) 21(4) (2002), doi:10.1145/571647.571648Google Scholar
  15. 15.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark. In: Proc. of Shape Modeling Applications 2004 (2004), doi:10.1109/SMI.2004.1314504Google Scholar
  16. 16.
    Takagi, H., Cho, S.B., Noda, T.: Evaluation of an IGA-based image retrieval system using wavelet coefficients. In: IEEE International Conference on Fuzzy Systems (1999), doi:10.1109/FUZZY.1999.790176Google Scholar
  17. 17.
    Takagi, H.: Interactive Evolutionary Computation: Fusion of the Capacities of EC Optimization and Human Evaluation. Proc. of the IEEE 89(9), 1275–1296 (2001), doi:10.1109/5.949485CrossRefGoogle Scholar
  18. 18.
    Tsutsui, S., Yamamura, M., Higuchi, T.: Multi-parent Recombination with Simplex Crossover in Real Coded Genetic Algorithm. In: Proc. of the 1999 Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 657–664 (1999), doi:10.1007/3-540-45356-3_36Google Scholar
  19. 19.
    Vandeborre, J.P., Couillet, V., Daoudi, M.: A practical approach for 3D model indexing by combining local and global invariants. In: Proc. of 1st International Symposium on 3D Data Processing Visualization and Transmission, pp. 644–647 (2002), doi:10.1109/TDPVT.2002.1024132Google Scholar
  20. 20.
    Wakayama, Y., Okajima, S., Takano, S., Okada, Y.: IEC-Based Motion Retrieval System Using Laban Movement Analysis. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010. LNCS (LNAI), vol. 6279, pp. 251–260. Springer, Heidelberg (2010), doi:10.1007/978-3-642-15384-6_27CrossRefGoogle Scholar
  21. 21.
    Yoo, H.W., Cho, S.B.: Video scene retrieval with interactive genetic algorithm. Multimedia Tools and Applications(2007), doi: 10.1007/s11042-007-0109-8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Graduate School of ISEEKyushu UniversityNishi-kuJapan

Personalised recommendations