Parallel ABox Reasoning of \({\mathcal{EL}}\) Ontologies

  • Yuan Ren
  • Jeff Z. Pan
  • Kevin Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7185)

Abstract

In order to support the vision of the Semantic Web, ontology reasoning needs to be highly scalable and efficient. A natural way to achieve scalability and efficiency is to develop parallel ABox reasoning algorithms for tractable OWL 2 profiles to distribute the load between different computation units within a reasoning system. So far there have been some work on parallel ABox reasoning algorithms for the pD* fragment of OWL 2 RL. However, there is still no work on parallel ABox reasoning algorithm for OWL 2 EL, which is the language for many influential ontologies (such as the SNOMED CT ontology). In this paper, we extend a parallel TBox reasoning algorithm [5] for \({\mathcal{ELH_{R+}}}\) to parallel ABox reasoning algorithms for \(\mathcal{ELH}_{\bot, \mathcal{R}+}\), which also supports the bottom concept so as to model disjointness and inconsistency. In design of algorithms, we exploit the characteristic of ABox reasonings to improve parallelisation and reduce unnecessary resource cost. Our evaluation shows that a naive implementation of our approach can compute all ABox entailments of a Not-Galen− ontology with about 1 million individuals and 9 million axioms in about 3 minutes.

Keywords

Description Logic Atomic Concept Sequential Reasoner Schedule Queue Completion Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aslani, M., Haarslev, V.: Parallel tbox classification in description logics –first experimental results. In: Proceeding of the 2010 Conference on ECAI 2010: 19th European Conference on Artificial Intelligence, pp. 485–490. IOS Press, Amsterdam (2010)Google Scholar
  2. 2.
    Borgida, A., Serafini, L.: Distributed Description Logics: Assimilating Information from Peer Sources. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on Data Semantics I. LNCS, vol. 2800, pp. 153–184. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)CrossRefGoogle Scholar
  4. 4.
    Hogan, A., Pan, J.Z., Polleres, A., Decker, S.: Saor: Template Rule Optimisations for Distributed Reasoning over 1 Billion Linked Data Triples. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 337–353. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Kazakov, Y., Krötzsch, M., Simančík, F.: Concurrent Classification of \(\mathcal{EL}\) Ontologies. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 305–320. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Liebig, T., Müller, F.: Parallelizing Tableaux-Based Description Logic Reasoning. In: Meersman, R., Tari, Z. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1135–1144. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Maier, R.M.F., Hitzler, P.: A mapreduce algorithm for el+. In: Proc. of International Worshop of Description Logic (DL 2010) (2010)Google Scholar
  8. 8.
    Meissner, A.: Experimental analysis of some computation rules in a simple parallel reasoning system for the \(\mathcal{ALC}\) description logic. Applied Mathematics and Computer Science 21(1), 83–95 (2011)MathSciNetMATHGoogle Scholar
  9. 9.
    Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.: Marvin: Distributed reasoning over large-scale semantic web data. Web Semant. 7, 305–316 (2009)CrossRefGoogle Scholar
  10. 10.
    Schlicht, A., Stuckenschmidt, H.: Distributed resolution for alc. In: Description Logics Workshop (2008)Google Scholar
  11. 11.
    Schlicht, A., Stuckenschmidt, H.: Distributed Resolution for Expressive Ontology Networks. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 87–101. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Serafini, L., Tamilin, A.: DRAGO: Distributed Reasoning Architecture for the Semantic Web. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 361–376. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Soma, R., Prasanna, V.K.: Parallel inferencing for owl knowledge bases. In: Proceedings of the 2008 37th International Conference on Parallel Processing, ICPP 2008, pp. 75–82. IEEE Computer Society, Washington, DC, USA (2008)CrossRefGoogle Scholar
  14. 14.
    Stoilos, G., Grau, B.C., Horrocks, I.: How incomplete is your semantic web reasoner? In: Proc. of AAAI 2010, pp. 1431–1436. AAAI Publications (2010)Google Scholar
  15. 15.
    ter Horst, H.J.: Completeness, decidability and complexity of entailment for rdf schema and a semantic extension involving the owl vocabulary. J. Web Sem. 3(2-3), 79–115 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: Owl Reasoning with Webpie: Calculating the Closure of 100 Billion Triples. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Reasoning using Mapreduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 634–649. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Weaver, J., Hendler, J.A.: Parallel Materialization of the Finite RDFS Closure for Hundreds of Millions of Triples. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 682–697. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Wu, G., Qi, G., Du, J.: Finding all justifications of owl entailments using tms and mapreducec. In: The ACM Conference on Information and Knowledge Management (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yuan Ren
    • 1
  • Jeff Z. Pan
    • 1
  • Kevin Lee
    • 2
  1. 1.University of AberdeenAberdeenUK
  2. 2.NICTAAustralia

Personalised recommendations