BipRank: Ranking and Summarizing RDF Vocabulary Descriptions

  • Gong Cheng
  • Feng Ji
  • Shengmei Luo
  • Weiyi Ge
  • Yuzhong Qu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7185)


When searching for RDF vocabularies, users often feel hindered by the lengthy description of a retrieved vocabulary from judging its relevance. A natural strategy for dealing with this issue is to generate a summary of the vocabulary description that compactly carries its main theme and reveals its relevance to the user’s information need. In this paper, we present a new solution to this problem of vocabulary summarization, which has been defined as ranking and selecting RDF sentences in our previous work. Firstly, we propose a novel bipartite graph representation of vocabulary description, on which we carry out a stochastic analysis of a random surfer’s behavior, from which we derive a new centrality measure for RDF sentences called BipRank. Further, we improve it by investigating the patterns of RDF sentences and employing their statistical features. Then, we combine BipRank with query relevance and cohesion metrics into an aggregate objective function to be optimized for the selection of RDF sentences. Our experiments on real-world vocabularies demonstrate the superiority of our approach to the baseline, and also validate its scalability in practice.


Cohesion query relevance random surfer model ranking vocabulary summarization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword Searching and Browsing in Databases Using BANKS. In: 18th International Conference on Data Engineering, pp. 431–440. IEEE Computer Society, Washington, DC (2002)Google Scholar
  2. 2.
    Cheng, G., Ge, W., Qu, Y.: Generating Summaries for Ontology Search. In: 20th International Conference Companion on World Wide Web, pp. 27–28. ACM, New York (2011)CrossRefGoogle Scholar
  3. 3.
    Diligenti, M., Gori, M., Maggini, M.: A Unified Probabilistic Framework for Web Page Scoring Systems. IEEE Trans. Knowl. Data Eng. 16(1), 4–16 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and Ranking Knowledge on the Semantic Web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Erkan, G., Radev, D.R.: LexRank: Graph-based Centrality as Salience in Text Summarization. J. Artif. Intell. Res. 22, 457–479 (2004)Google Scholar
  6. 6.
    Harth, A., Kinsella, S., Decker, S.: Using Naming Authority to Rank Data and Ontologies for Web Search. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 277–292. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Ladwig, G., Tran, T.: Combining Query Translation with Query Answering for Efficient Keyword Search. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 288–303. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Li, N., Motta, E.: Evaluations of User-Driven Ontology Summarization. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 544–553. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Li, N., Motta, E., d’Aquin, M.: Ontology Summarization: An Analysis and An Evaluation. In: Proceedings of the International Workshop on Evaluation of Semantic Technologies, CEUR (2010)Google Scholar
  10. 10.
    Penin, T., Wang, H., Tran, T., Yu, Y.: Snippet Generation for Semantic Web Search Engines. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 493–507. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Peroni, S., Motta, E., d’Aquin, M.: Identifying Key Concepts in an Ontology, through the Integration of Cognitive Principles with Statistical and Topological Measures. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 242–256. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Spärck Jones, K.: Automatic Summarising: The State of the Art. Inf. Process. Manag. 43(6), 1449–1481 (2007)CrossRefGoogle Scholar
  13. 13.
    Tummarello, G., Morbidoni, C., Bachmann-Gmür, R., Erling, O.: RDFSync: Efficient Remote Synchronization of RDF Models. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 537–551. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Tzitzikas, Y., Kotzinos, D., Theoharis, Y.: On Ranking RDF Schema Elements (and its Application in Visualization). J. Univers. Comput. Sci. 13(12), 1854–1880 (2007)Google Scholar
  15. 15.
    Wu, G., Li, J., Feng, L., Wang, K.: Identifying Potentially Important Concepts and Relations in an Ontology. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 33–49. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Zhang, X., Cheng, G., Qu, Y.: Ontology Summarization Based on RDF Sentence Graph. In: 16th International Conference on World Wide Web, pp. 707–716. ACM, New York (2007)CrossRefGoogle Scholar
  17. 17.
    Zhang, X., Li, H., Qu, Y.: Finding Important Vocabulary Within Ontology. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 106–112. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gong Cheng
    • 1
  • Feng Ji
    • 2
  • Shengmei Luo
    • 2
  • Weiyi Ge
    • 1
  • Yuzhong Qu
    • 1
  1. 1.State Key Laboratory for Novel Software TechnologyNanjing UniversityChina
  2. 2.Communication Services R&D InstituteZTE CorporationChina

Personalised recommendations