Quantitative Concept Analysis

  • Dusko Pavlovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7278)

Abstract

Formal Concept Analysis (FCA) begins from a context, given as a binary relation between some objects and some attributes, and derives a lattice of concepts, where each concept is given as a set of objects and a set of attributes, such that the first set consists of all objects that satisfy all attributes in the second, and vice versa. Many applications, though, provide contexts with quantitative information, telling not just whether an object satisfies an attribute, but also quantifying this satisfaction. Contexts in this form arise as rating matrices in recommender systems, as occurrence matrices in text analysis, as pixel intensity matrices in digital image processing, etc. Such applications have attracted a lot of attention, and several numeric extensions of FCA have been proposed. We propose the framework of proximity sets (proxets), which subsume partially ordered sets (posets) as well as metric spaces. One feature of this approach is that it extracts from quantified contexts quantified concepts, and thus allows full use of the available information. Another feature is that the categorical approach allows analyzing any universal properties that the classical FCA and the new versions may have, and thus provides structural guidance for aligning and combining the approaches.

Keywords

concept analysis enriched category semantic completion universal property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azar, Y., Fiat, A., Karlin, A., McSherry, F., Saia, J.: Spectral analysis of data. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp. 619–626. ACM, New York (2001)CrossRefGoogle Scholar
  2. 2.
    Banaschewski, B., Bruns, G.: Categorical characterization of the MacNeille completion. Archiv der Mathematik 18(4), 369–377 (1967)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bělohlávek, R.: Fuzzy relational systems: foundations and principles, vol. 20. Plenum Publishers (2002)Google Scholar
  4. 4.
    Bělohlávek, R.: Concept lattices and order in fuzzy logic. Annals Pure Appl. Logic 128(1-3), 277–298 (2004)MATHCrossRefGoogle Scholar
  5. 5.
    Belohlavek, R.: What is a Fuzzy Concept Lattice? II. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 19–26. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bonsangue, M.M., van Breugel, F., Rutten, J.J.M.M.: Generalized metric spaces: completion, topology, and power domains via the yoneda embedding. Theor. Comput. Sci. 193(1-2), 1–51 (1998)MATHCrossRefGoogle Scholar
  7. 7.
    Burusco, A., Fuentes-González, R.: Construction of the L-fuzzy concept lattice. Fuzzy Sets and systems 97(1), 109–114 (1998)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Burusco, A., Fuentes-González, R.: The study of the L-fuzzy concept lattice. Mathware & Soft Computing 1(3), 209–218 (2008)Google Scholar
  9. 9.
    Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. John Wiley & Sons (2004)Google Scholar
  10. 10.
    Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by Latent Semantic Analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  11. 11.
    du Boucher-Ryan, P., Bridge, D.G.: Collaborative recommending using Formal Concept Analysis. Knowl.-Based Syst. 19(5), 309–315 (2006)CrossRefGoogle Scholar
  12. 12.
    Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Ganter, B., Wille, R.: Conceptual scaling. Institute for Mathematics and Its Applications 17, 139 (1989)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI), vol. 3626. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)MATHCrossRefGoogle Scholar
  16. 16.
    Gehrke, M.: Generalized kripke frames. Studia Logica 84(2), 241–275 (2006)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kaytoue, M., Kuznetsov, S.O., Macko, J., Meira Jr., W., Napoli, A.: Mining biclusters of similar values with triadic concept analysis. In: Proceedings of CLA 2011. CLA (2011)Google Scholar
  18. 18.
    Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Pattern mining in numerical data: Extracting closed patterns and their generators. Research Report RR-7416, INRIA (October 2010)Google Scholar
  19. 19.
    Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining with formal concept analysis. In: Proceedings of IJCAI 2011, pp. 1342–1347. AAAI (2011)Google Scholar
  20. 20.
    Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis. Inf. Sci. 10(181), 1989–2001 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Mathematical Society Lecture Note, vol. 64, pp. 1–136. Cambridge University Press (1982); Reprinted in Theory and Applications of Categories, vol. 10, pp.1–136 (2005)Google Scholar
  22. 22.
    Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer 42(8), 30–37 (2009)CrossRefGoogle Scholar
  23. 23.
    Krajči, S.: A generalized concept lattice. Logic Journal of IGPL 13(5), 543–550 (2005)MATHCrossRefGoogle Scholar
  24. 24.
    Künzi, H.P., Schellekens, M.P.: On the yoneda completion of a quasi-metric space. Theor. Comput. Sci. 278(1-2), 159–194 (2002)MATHCrossRefGoogle Scholar
  25. 25.
    William Lawvere, F.: Metric spaces, generalised logic, and closed categories. Rendiconti del Seminario Matematico e Fisico di Milano 43, 135–166 (1973)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lehmann, F., Wille, R.: A Triadic Approach to Formal Concept Analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  27. 27.
    Leinster, T., Cobbold, C.: Measuring diversity: the importance of species similarity. Ecology (to appear, 2012)Google Scholar
  28. 28.
    MacNeille, H.M.: Extensions of partially ordered sets. Proc. Nat. Acad. Sci. 22(1), 45–50 (1936)MATHCrossRefGoogle Scholar
  29. 29.
    Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer (1971); 2nd edn. (1997) Google Scholar
  30. 30.
    Pavlovic, D.: Network as a Computer: Ranking Paths to Find Flows. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 384–397. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Pavlovic, D.: On quantum statistics in data analysis. In: Bruza, P. (ed.) Quantum Interaction 2008. AAAI (2008), arxiv.org:0802.1296Google Scholar
  32. 32.
    Pavlovic, D.: Quantifying and Qualifying Trust: Spectral Decomposition of Trust Networks. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 1–17. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal Concept Analysis in Knowledge Discovery: A Survey. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 139–153. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. 34.
    Wagner, K.R.: Liminf convergence in omega-categories. Theor. Comput. Sci. 184(1-2), 61–104 (1997)MATHCrossRefGoogle Scholar
  35. 35.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Dan Reidel, Dordrecht (1982)Google Scholar
  36. 36.
    Wilson, W.A.: On quasi-metric spaces. Amer. J. Math. 52(3), 675–684 (1931)CrossRefGoogle Scholar
  37. 37.
    Kim, Y.W.: Pseudo quasi metric spaces. Proc. Japan Acad. 10, 1009–1012 (1968)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dusko Pavlovic
    • 1
    • 2
  1. 1.Royal Holloway, University of LondonUK
  2. 2.University of TwenteThe Netherlands

Personalised recommendations