Publication Analysis of the Formal Concept Analysis Community

  • Stephan Doerfel
  • Robert Jäschke
  • Gerd Stumme
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7278)

Abstract

We present an analysis of the publication and citation networks of all previous editions of the three conferences most relevant to the FCA community: ICFCA, ICCS and CLA. Using data mining methods from FCA and graph analysis, we investigate patterns and communities among authors, we identify and visualize influential publications and authors, and we give a statistical summary of the conferences’ history.

Keywords

bibliometrics citation analysis community data mining influence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, Y., Janssen, J., Milios, E.E.: Characterizing and mining the citation graph of the computer science literature. Knowledge and Information Systems 6(6), 664–678 (2004)CrossRefGoogle Scholar
  2. 2.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)CrossRefGoogle Scholar
  3. 3.
    Gansner, E.R., Hu, Y., Kobourov, S.G.: GMap: Drawing graphs as maps. cs.CG, arXiv:0907.2585v1 (July 2009)Google Scholar
  4. 4.
    Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software engineering. Software Practice & Experience 30(11), 1203–1233 (2000)MATHCrossRefGoogle Scholar
  5. 5.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)MATHCrossRefGoogle Scholar
  6. 6.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality Indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences 98(2), 404–409 (2001)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  10. 10.
    Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal Concept Analysis in Knowledge Discovery: A Survey. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 139–153. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Poelmans, J., Elzinga, P., Viaene, S., Dedene, G., Kuznetsov, S.O.: Text mining scientific papers: a survey on FCA-based information retrieval research. In: Perner, P. (ed.) Industrial Conference on Data Mining - Poster and Industry Proceedings, pp. 82–96. IBaI Publishing (2011)Google Scholar
  12. 12.
    Rock, T., Wille, R.: Ein TOSCANA–Erkundungssystem zur Literatursuche. FB4-Preprint 1901, TH Darmstadt (1997)Google Scholar
  13. 13.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with titanic. Data & Knowledge Engineering 42(2), 189–222 (2002)MATHCrossRefGoogle Scholar
  14. 14.
    Thijs, B., Glänzel, W.: The influence of author self-citations on bibliometric meso-indicators. The case of european universities. Scientometrics 66(1), 71–80 (2006)CrossRefGoogle Scholar
  15. 15.
    Tilley, T., Eklund, P.: Citation analysis using formal concept analysis: A case study in software engineering. In: 18th International Workshop on Database and Expert Systems Applications (DEXA), pp. 545–550. IEEE Computer Society Press (September 2007)Google Scholar
  16. 16.
    Voss, J., Hotho, A., Jäschke, R.: Mapping bibliographic records with bibliographic hash keys. In: Kuhlen, R. (ed.) Information: Droge, Ware oder Commons?, Proceedings of the ISI. Hochschulverband Informationswissenschaft, Verlag Werner Hülsbusch (2009)Google Scholar
  17. 17.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994)Google Scholar
  18. 18.
    Barbut, M., Monjardet, B.: Ordre et classification: algèbre et combinatoire. Hachette, Paris (1970)MATHGoogle Scholar
  19. 19.
    Becker, P., Correia, J.H.: The ToscanaJ Suite for Implementing Conceptual Information Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  21. 21.
    Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)MATHGoogle Scholar
  22. 22.
    Bordat, J.P.: Calcul pratique du treillis de galois d’une correspondance. Informatiques et Sciences Humaines 96, 31–47 (1986)MathSciNetMATHGoogle Scholar
  23. 23.
    Bělohlávek, R., Vychodil, V.: What is a fuzzy concept lattice? In: CLA 2005, Proceedings of the 3rd International Workshop, Olomouc, vol. 162, pp. 34–45. CEUR-WS.org (2005)Google Scholar
  24. 24.
    Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. John Wiley & Sons, Chichester (2004)MATHCrossRefGoogle Scholar
  25. 25.
    Chein, M., Mugnier, M.-L.: Conceptual graphs: fundamental notions. Revue d’Intelligence Artificielle 6(4), 365–406 (1992)Google Scholar
  26. 26.
    Cimiano, P., Hotho, A., Stumme, G., Tane, J.: Conceptual Knowledge Processing with Formal Concept Analysis and Ontologies. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 189–207. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Dau, F., Klinger, J.: From Formal Concept Analysis to Contextual Logic. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 81–100. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  29. 29.
    Ferré, S.: Camelis: Organizing and browsing a personal photo collection with a logical information system. In: Proceedings of the Fifth International Conference on Concept Lattices and Their Applications, Montpellier, vol. 331, pp. 112–123. CEUR-WS.org (2007)Google Scholar
  30. 30.
    Freese, R.: Automated Lattice Drawing. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 112–127. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Ganter, B.: Two basic algorithms in concept analysis. FB4-Preprint 831, TH Darmstadt (1984)Google Scholar
  32. 32.
    Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  33. 33.
    Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI), vol. 3626. Springer, Heidelberg (2005)Google Scholar
  34. 34.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)MATHCrossRefGoogle Scholar
  35. 35.
    Godin, R., Valtchev, P.: Formal Concept Analysis-Based Class Hierarchy Design in Object-Oriented Software Development. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 304–323. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines 95, 5–18 (1986)MathSciNetGoogle Scholar
  37. 37.
    Jay, N., Kohler, F., Napoli, A.: Analysis of Social Communities with Iceberg and Stability-Based Concept Lattices. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 258–272. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  38. 38.
    Krajca, P., Outrata, J., Vychodil, V.: Parallel recursive algorithm for FCA. In: Proceedings of the Sixth International Conference on Concept Lattices and Their Applications, Olomouc, vol. 433, pp. 71–82. CEUR-WS.org (2008)Google Scholar
  39. 39.
    Krajči, S.: The basic theorem on generalized concept lattice. In: Proceedings of the 2nd International Workshop on CLA 2004, Ostrava, pp. 25–33 (2004)Google Scholar
  40. 40.
    Kuznetsov, S.O.: Machine Learning and Formal Concept Analysis. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  41. 41.
    Kuznetsov, S.O., Obiedkov, S.: Counting Pseudo-intents and #P-completeness. In: Missaoui, R., Schmidt, J. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3874, pp. 306–308. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  42. 42.
    Kuznetsov, S.O., Obiedkov, S., Roth, C.: Reducing the Representation Complexity of Lattice-Based Taxonomies. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 241–254. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  43. 43.
    Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. Journal of Experimental & Theoretical Artificial Intelligence 14(2-3), 189–216 (2002)MATHCrossRefGoogle Scholar
  44. 44.
    Lehmann, F., Wille, R.: A Triadic Approach To Formal Concept Analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  45. 45.
    Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville (1983)MATHGoogle Scholar
  46. 46.
    Mugnier, M.-L., Chein, M.: Représenter des connaissances et raisonner avec des graphes. Revue d’Intelligence Artificielle 10(1), 7–56 (1996)MATHGoogle Scholar
  47. 47.
    Peirce, C.S.: Collected Papers, pp. 1931–1935. Harvard University Press, CambridgeGoogle Scholar
  48. 48.
    Peirce, C.S.: Reasoning and the Logic of Things. Harvard University Press, Cambridge (1992)Google Scholar
  49. 49.
    Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen: ein Beitrag zur Restrukturierung der mathematischen Logik. Shaker, Aachen (1998)MATHGoogle Scholar
  50. 50.
    Prediger, S.: Simple Concept Graphs: A Logic Approach. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 225–239. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  51. 51.
    Roberts, D.: The Existential Graphs of Charles S. Peirce. Mouton, The Hague (1973)Google Scholar
  52. 52.
    Roth, C., Obiedkov, S., Kourie, D.: Towards Concise Representation for Taxonomies of Epistemic Communities. In: Yahia, S.B., Nguifo, E.M., Belohlavek, R. (eds.) CLA 2006. LNCS (LNAI), vol. 4923, pp. 240–255. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  53. 53.
    Salvat, E., Mugnier, M.-L.: Sound and Complete Forward and Backward Chainings of Graph Rules. In: Eklund, P., Ellis, G., Mann, G. (eds.) ICCS 1996. LNCS, vol. 1115, pp. 248–262. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  54. 54.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)MATHGoogle Scholar
  55. 55.
    Sowa, J.F.: Conceptual graphs summary. In: Eklund, P., Nagle, T., Nagle, J., Gerholz, L. (eds.) Conceptual Structures: Current Research and Practice, pp. 3–51. Ellis Horwood (1992)Google Scholar
  56. 56.
    Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks/Cole Publishing, Pacific Grove (2000)Google Scholar
  57. 57.
    Tilley, T., Cole, R., Becker, P., Eklund, P.: A Survey of Formal Concept Analysis Support for Software Engineering Activities. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 250–271. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  58. 58.
    Valtchev, P., Missaoui, R., Godin, R.: Formal Concept Analysis for Knowledge Discovery and Data Mining: The New Challenges. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 352–371. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  59. 59.
    van der Merwe, D., Obiedkov, S., Kourie, D.: AddIntent: A New Incremental Algorithm for Constructing Concept Lattices. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 372–385. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  60. 60.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)Google Scholar
  61. 61.
    Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) ICCS 1997. LNCS, vol. 1257, pp. 290–303. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  62. 62.
    Wille, R.: Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 317–331. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stephan Doerfel
    • 1
  • Robert Jäschke
    • 1
  • Gerd Stumme
    • 1
  1. 1.Knowledge & Data Engineering GroupUniversity of KasselKasselGermany

Personalised recommendations